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I. LINEAR RESPONSE EXCITATIN THEORY: G0W0 THEORY

Within the linear response many body perturbation theory (MBPT), we first start with the electronic Hartree-Fock
exchange static self-energy

∑x

nk. The matrix elements of this self-energy in the plane wave basis set are diagonal and
can be expressed as [1, 2]

∑x

nk = 〈nk |
∑x

|nk〉 = −

occ
∑

m

∫

BZ

dq

(2π)
3

∑

G

v (q+G) × |ρnm (k,q,G)|
2
fm(k−q) (1)

in which |nk〉 is the momentum state of nth band, q are the transferred momenta, m are the number of occupied
electronic bands, f is the Fermi function and ρ is the density matrix. G are the G-vectors with v (q+G) = 4π

|q+G|2
as

the three-dimensional Coulomb potential in the Fourier transformed q-plane.
At this level, the Hartree-Fock contribution to the ground state Kohn-Sham energy eigenvalues can be written as

EHF
nk = EDFT

nk + (
∑x

nk − V xc
nk) (2)

in which V xc
nk is the exchange and correlation functional at the level of local density or generalized gradient approxima-

tion.
The GW approximation theory is the generalization of this Hartree-Fock theory achieved by replacing the bare static
screening potential v (r, r′) by a dynamic screened interaction W(r, r′;ω). We describe this scheme as follows: Us-
ing the time-ordered single-particle non-interacting Green’s propagator G0, the polarization within the random phase
approximation (RPA, i.e., using Hartree-kernel) is first calculated

P (r, r′′; τ) = −iG0 (r, r
′; τ)G0 (r

′, r;−τ) (3)

where τ = t− t′, while t and t′ are the time developments in the Green’s propagator. Note that Eqn.(3) is summed over
both the occupied and unoccupied states in the Fourier transformed ω-plane

P (r, r′′;ω) =

occ
∑

i

unocc
∑

j

ψ0
i (r)ψ

0∗
j (r)ψ0∗

i (r′)ψ0
j (r

′) ×

[

1

ω + E0
i − E0

j + iη
−

1

ω − E0
i + E0

j − iη

]

(4)

where the number η is infinitesimal real and positive number. The microscopic dielectric function is the convolution of
P (r, r′′;ω) with v (r, r′)

ε (r, r′;ω) = δ (r− r′)−

∫

P (r, r′′;ω) v (r, r′′) d3r′′ (5)

From Eqn. (5), the inverse microscopic dielectric function ε−1 (r, r′′;ω) is obtained and is again convoluted with v (r, r′)
to get

W(r, r′;ω) =

∫

ε−1 (r, r′′;ω) v (r, r′′) d3r′′ (6)

Equation (6) signifies that a quasi-particle at r induces an effective screened interacting dynamic potential W (r, r′;ω) at
r′. Once W(r, r′;ω) is known, the GW self-energy is a final full frequency-axis convolution of non-interacting propagator
G0 with W(r, r′;ω)

∑GW
(r, r′;ω) = i

2π

∫ +∞

−∞ G0 (r, r
′;ω + ω′)W (r, r′;ω′) eiω

′ηdω′ (7)

Single shot GW or G0W0 is the condition when the non-interacting Green’s function is used and the screened interaction
W is only once iterated through RPA. Note that now, the screening W implicitly defines ε−1

GG′ in Fourier transformed
q-plane. A pure correlational G0W self-energy can be extracted from Eqn. (7) as

∑c
(r, r′;ω) = i

2π

∫ +∞

−∞
G0 (r, r

′;ω + ω′)Wc (r, r′;ω) dω′ (8)
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leaving the pure exchange term as

∑x (r, r′;ω) = i
2π

∫ +∞

−∞
G0 (r, r

′;ω + ω′) v (r, r′) eiω
′ηdω′ (9)

in which Wc (r, r′;ω) = W(r, r′;ω)− v (r, r′). Eqn. (9) can be computed analytically in both q and ω plane leading to
Eqn. (1). Symbolically, the total GW self-energy is split into a respective exchange (Hartree-Fock) and correlational
part as iGv+iG(W-v). Because of the presence of several poles of both G0 and W, located infinitely close to the
real-frequency axis, the above frequency integral Eqn. (7) becomes computationally expensive. What is then done is
to replace ε−1

GG′ with an effective inverse dielectric function model consisting of a single pole, essentially at the plasma
frequency describing the collective charge-neutral excitation. This approximation is known as the “plasmon-pole model”.
There has been various such celebrated approximate models developed in the past like the Hybertsen-Louie (HL) [3],
Godby-Needs (GN) [? ], Linden-Horsch (LH) [4] and Engel-Farid (EF) [5], to name a few [6]. Out of these, the first
two are the most common in practice. Here, we use the GN plasmon-pole model approximation since this is found to be
most stable and fits the above inverse dynamic dielectric function and the corresponding QP energies very accurately
when evaluated by the complete full-frequency integral [6].
The GN plasmon-pole model replace this ε−1

GG′ with a single pole function of the form

ε−1
G,G′ (q, ω) ∼ δG,G′ +RG,G′ (q)

{

1

[ω − ΩG,G′ (q) + i0+]
−

1

[ω +ΩG,G′ (q) + i0+]

}

(10)

The residuals RG,G′ (q) and the energy ΩG,G′ (q) parameters are generally obtained by fitting after calculating the
RPA inverse dielectric matrix at two given frequencies ω=0 and at a user defined imaginary frequency (iω′

p), in which
(ω′

p) is typically chosen such that it should be near to the plasmon frequency (ωp). These two parameters are then

evaluated as RG,G′ (q) = 1
2ε

−1
G,G′ (q, ω = 0)ΩG,G′ (q) and ΩG,G′ (q) = ω′

p

√

ε
−1

G,G′(q,ω=ω′

p)
ε
−1

G,G′
(q,ω=0)−ε

−1

G,G′(q,ω=ω′

p)
. To account for

the charge inhomogeneity, a local field effect was also employed along the in-plane periodic direction using a sufficient
response block size cut-off.
Assuming that the difference between the QP and the mean-field energies are small, the nonlinear QP energy [1]

E
QP
nk = EDFT
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〈

nk
∣

∣

∣

∑GW
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QP
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− V xc
∣

∣

∣
nk

〉

(11)

can be linearized [1, 7] by taking the first-order Taylor’s series expansion around the Kohn-Sham DFT eigen-energies in
order to get

E
QP
nk = EDFT

nk + Znk

〈
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∣

∣

∣

∑GW (
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nk

)

− V xc
∣

∣

∣
nk

〉

(12)

The QP lifetimes are the reciprocal of the imaginary part of
∑GW

nk =
〈

nk
∣

∣

∣

∑GW (

r, r′;ω = EDFT
nk

)

∣

∣

∣
nk

〉

. This factor

Z =

[

1−
d
∑GW

nk

dω

]−1

(13)

with 0≤ Znk ≤1 is then the QP renormalized weight factor. Values of Z very close to 1 signifies a pure QP state. The
corresponding spectral function

An,k (ω) =
1

π
×
∣

∣

∣
ℑ
∑GW

nk

∣

∣

∣
×

[

[

ω − EDFT
nk −

(

ℜ
∑GW

nk −V xc
nk

)]2

+
[

ℑ
∑GW

nk

]2
]−1

(14)

is Lorentzian and the spreading (full-width at half maximum, FWHM) defines the strength of the correlated interaction.
A sharp spectral function defines a less correlated interaction, while a dwarf and spread defines a strong interaction.
One of the major challenges when dealing with 2D systems, is the finite length in one of the spatial direction. This
introduces rapid variations in screening and as a result the integral quantities like exchange self-energies, BS kernel,
total energy expression, etc. suffers q →0 divergence problem due to the quasi-2D nature of Coulomb interaction. In
order to compute those quantities properly, “random integration method” emerged as the most numerically accurate
methodology [8–10]. These divergences can be solved by the state-of-the-art computational methodologies performed
on high-performance CPUs. We explain this in the spirit of [8–10]: The numerical evaluation of the GW self-energy
(Eqn. (7)) is a horrendous task. A fine sampling of the BZ would require an exorbitant computational cost since large
grids of transferred momenta are always connected with the use of equally large grids of k points [9]. Therefore a
preferable solution is to fix certain k-points grid and the integration is then performed over the BZ by using a large
random grid of points to do the q -summation. These random points are chosen in such a way to cover the whole of the

BZ. Quantitatively, rewriting the Coulombic integral as
∫

d3q
[

f(q)

|q+G|2

]

, each of this kind of term appearing in static or

dynamic self-energy (in GW or BSE-only for oscillators and occupation numbers) is integrated around each q over a
small volume centered at q+G whereas the rest of the integrand f (q) remains almost constant. Computationally, this
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small volume could be a box for planar geometry, cylinder for one-dimensional geometry and sphere for bulk. The height
of the box should be equal to the either side distance between the periodic images done while using ground state or the
density functional theory task. We particularly this divergence overcome situation for the diagonal matrix elements, the
case with off-diagonal matrix elements is then straight forward: The diagonal matrix element of the exchange self-energy
(Eqn. (1)) after assuming that the integral is a smooth function of momenta, can then be written as

〈nk |
∑x

|nk〉 ≈
∑

q
i

∑

G

F (qi,G)

∫

smallBZ (q
i
)

d3q
4π

|q+G|
2 (15)

This integral can now be evaluated using a Montecarlo method and the procedure is known in literature as random
integration method. This way we see that the qi → 0 divergence is also resolved here since the 3D q integration forbids
this to happen. In addition, the integral pre-factor is also regular when qi → 0. Some large random points can be
incorporated in order to evaluate the Coulomb integrals with a G-vector suitable cut-off. The numerical integral was
defined within a box-structure extending some vacuum distance on either side of the monolayer. This truncates the
Coulomb potential between the repeated images and a faster convergence can be achieved.
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