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I. THEORY

In the presence of lattice vibrations, the first order electron-phonon matrix elements can be written as [1]
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where, g
qλ
n′nk describes the scattering probability from |n,k〉 to |n′,k+ q〉 as a result of emission or absorption of

a phonon with momentum q, frequency ω in branch λ. φscf is the self-consistent potential obtained by calculating
the charge density from DFT. α are the atomic displacements and τs is the location of mass M of the sth atomic

species in the unit cell with the polarization vectors ǫ∗
(

qλ
s

)

. DFPT is then used to solve Eq. (A.1) taking 200

random q points in the irreducible Brillioun zone (BZ). The corresponding energy shift of the state |n,k〉 can now
be obtained from the MBPT calculations. The single particle interacting Green’s propagator in this case is Gnk (ω) =
[
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in which ǫnk is the bare energy.
∑Fan

nk
(ω) and

∑DW

nk
are the Fan and the Debye-

Waller self-energies respectively, that composed of all possible type of scatterings. The former is frequency dependent
and can be written as [1]
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in which N and f are the Bose and Fermi functions respectively. The later is the frequency independent and can be
expressed as [2, 3]
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The coefficients Λqλ,−qλ
nn′k are the second order couplings = 1
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〈nk+ q+ q′ |∇αs∇βsφscf |nk〉. We

note here that in order to calculate the Debye-Waller term, a second-order derivative of the self-consistent potential
within the perturbation theory is required. This is extremely computationally costly and is not provided by the DFPT
calculation. Thus, in practice one uses the rigid-ion approximation and re-cast the Debye-Waller in terms of a prod-
uct of Fan-like terms [4, 5]. Such modification needs Sternheimer linear solution [6] to avoid summation over empty
electronic states. The MBPT Yambo code does not have such Sternheimer implementation. As a result the zero-point
renormalization (ZPR) will converge very slowly with the number of bands.
Using Gnk (ω) and Eqs. (A.2) and (A.3), it is now possible to write the energy shift ∆Enk of the state |n,k〉 as [7]

∆Enk − ǫnk ≈ Znkℜ

[

∑Fan

nk
(ω) +

∑DW

nk

]

(4)

in which Znk =
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is the QP renormalized weight factor (0 < Znk ≤ 1) in this case.

Znk → 1 for ∂
∂ω

ℜ
∑Fan

nk → 0 is known as the static or the on-the-mass-shell approximation [7]. Once Gnk (ω) is known,
the spectral function can then be expressed as
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in which
∑ep (ω) =

∑Fan

nk
(ω) +
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nk
. The shifts can be used to determine the Eliashberg function at each state

|n,k〉 as [8]
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Equation (A.6) can be computed at any state to get the required difference between conduction and valence energies.
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