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I. THEORY

In the presence of lattice vibrations, the first order electron-phonon matrix elements can be written as [1]
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where, gg,)‘nk describes the scattering probability from |n,k) to |n’,k + q) as a result of emission or absorption of
a phonon with momentum q, frequency w in branch A. ¢,y is the self-consistent potential obtained by calculating
the charge density from DFT. a are the atomic displacements and 7, is the location of mass M of the s atomic

species in the unit cell with the polarization vectors e* (q—:‘) DFPT is then used to solve Eq. (A.1) taking 200

random ¢ points in the irreducible Brillioun zone (BZ). The corresponding energy shift of the state |n,k) can now

be obtained from the MBPT calculations. The single particle interacting Green’s propagator in this case is Gk (w) =
-1
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[w — €nk — Zn:n (w) — an ] in which €, is the bare energy. Zn:n (w) and an are the Fan and the Debye-

Waller self-energies respectively, that composed of all possible type of scatterings. The former is frequency dependent

and can be written as [1]
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in which N and f are the Bose and Fermi functions respectively. The later is the frequency independent and can be
expressed as [2, 3]
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The coefficients Agn}kq)‘ are the second order couplings = $3°_ Y ap % (nk+dq+4q" |VasVgspscr|nk). We
note here that in order to calculate the Debye-Waller term, a second-order derivative of the self-consistent potential
within the perturbation theory is required. This is extremely computationally costly and is not provided by the DFPT
calculation. Thus, in practice one uses the rigid-ion approximation and re-cast the Debye-Waller in terms of a prod-
uct of Fan-like terms [4, 5]. Such modification needs Sternheimer linear solution [6] to avoid summation over empty
electronic states. The MBPT Yambo code does not have such Sternheimer implementation. As a result the zero-point
renormalization (ZPR) will converge very slowly with the number of bands.

Using Gnx (w) and Eqgs. (A.2) and (A.3), it is now possible to write the energy shift AE,x of the state |n, k) as [7]
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in which Zy = |1 2RI (w )‘ } is the QP renormalized weight factor (0 < Z,x < 1) in this case.
W=€nk

Znx — 1 for 6 %ZFW — 0 is known as the static or the on-the-mass-shell approximation [7]. Once Gx (w) is known,
the spectral functlon can then be expressed as
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e Fan DW
in which > (w) = Z N (w) + Z C The shifts can be used to determine the Eliashberg function at each state
In, k) as [8]
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Equation (A.6) can be computed at any state to get the required difference between conduction and valence energies.
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