Absorption Spectra from Bethe Salpeter Equation

Sitangshu Bhattacharya*
Nanoscale Electro-Thermal Laboratory, Department of Electronics and Communication Engineering, Indian Institute of Information Technology-Allahabad, Uttar Pradesh 211015, India

I. EXCITON AFFAIRS IN CRYSTAL: BETHE SALPETER EQUATION OF MOTION

Excitonic affairs are governed by a two-particle (electron and hole) Dyson-like equation of motion. In a ladderapproximation representation [1],

$$
\begin{equation*}
\mathcal{L}\left(12 ; 1^{\prime} 2^{\prime}\right)=\mathcal{L}_{0}\left(12 ; 1^{\prime} 2^{\prime}\right)+\int d(3456) \mathcal{L}_{0}\left(14 ; 1^{\prime} 3\right) K(35 ; 46) \mathcal{L}\left(62 ; 52^{\prime}\right) \tag{1}
\end{equation*}
$$

in which $\mathcal{L}\left(12 ; 1^{\prime} 2^{\prime}\right)$ and $\mathcal{L}_{0}\left(12 ; 1^{\prime} 2^{\prime}\right)$ are the interacting and non-interacting two-particle Green's propagator respectively. The variable "(1)" (and similar others) is a short hand notation for the spatial, spin and four time (two creation and two annihilation) coordinates: $(1) \equiv\left(r_{1}, \sigma_{1}, t_{1}\right)$ respectively. In case of occupied (v) and unoccupied (c) states, \mathcal{L}_{0} in Fourier transform plane has the form

$$
\begin{equation*}
\mathcal{L}_{0}^{v c v^{\prime} c^{\prime}}(\omega)=\frac{1}{\omega-\left(E_{c}^{D F T}-E_{v}^{D F T}\right)+i \eta} \delta_{c c^{\prime}} \delta_{v v^{\prime}} \tag{2}
\end{equation*}
$$

Note here that the four time variables are now decomposed in a single frequency in the ω plane.
The kernel $K_{v c \mathbf{k} v^{\prime} c^{\prime} \mathbf{k}^{\prime}}$ is a functional static quantity and is the sum of a bare exchange Coulomb repulsion and statically screened Coulomb attraction between the electron and hole. The latter is represented as

$$
\begin{equation*}
\mathrm{W}\left(v c \mathbf{k} ; v^{\prime} c^{\prime} \mathbf{k}^{\prime}\right)=\frac{1}{\Omega} \sum_{\mathbf{G G}^{\prime}} v\left(\mathbf{q}+\mathbf{G}^{\prime}\right) \epsilon_{\mathbf{G G}^{\prime}}^{-1}(\mathbf{q}) \times\left\langle v^{\prime} \mathbf{k}^{\prime}\right| e^{-i\left(\mathbf{q}+\mathbf{G}^{\prime}\right) \cdot \mathbf{r}}|v \mathbf{k}\rangle\langle c \mathbf{k}| e^{i\left(\mathbf{q}+\mathbf{G}^{\prime}\right) \cdot \mathbf{r}}\left|c^{\prime} \mathbf{k}^{\prime}\right\rangle \delta_{\mathbf{q}, \mathbf{k}-\mathbf{k}^{\prime}} \tag{3}
\end{equation*}
$$

while the former is

$$
\begin{equation*}
V\left(v c \mathbf{k} ; v^{\prime} c^{\prime} \mathbf{k}^{\prime}\right)=\frac{1}{\Omega} \sum_{\mathbf{G} \neq 0} v(\mathbf{G})\left\langle v^{\prime} \mathbf{k}^{\prime}\right| e^{-i \mathbf{G} \cdot \mathbf{r}}\left|c^{\prime} \mathbf{k}^{\prime}\right\rangle \times\langle c \mathbf{k}| e^{i \mathbf{G} \cdot \mathbf{r}}|v \mathbf{k}\rangle \tag{4}
\end{equation*}
$$

where Ω in this case is the cell volume. K is thus defined as $K_{v c \mathbf{k} ; v^{\prime} c^{\prime} \mathbf{k}^{\prime}}=\langle v c \mathbf{k}| \mathrm{W}-2 V\left|v^{\prime} c^{\prime} \mathbf{k}^{\prime}\right\rangle$. It is in this statically screened kernel W in which the $\mathrm{G}_{0} \mathrm{~W}_{0}$ QP energies are included to get the correct transition energies. Note that in order to obtain a solvable BSE [2], W is approximated to be a static, which can be borrowed from the preceding dynamic screening calculations in $\mathrm{G}_{0} \mathrm{~W}_{0}$ simply by putting $\omega=0$.
Assuming that the off-diagonal elements in the self-energies are small which consequently makes the total Hamiltonian to be a Hermitian and the QP states orthogonal, the exciton EOM (i.e., the BSE) becomes [1]

$$
\begin{equation*}
\left(E_{c \mathbf{k}}^{Q P}-E_{v \mathbf{k}}^{Q P}\right) A_{v c \mathbf{k}}^{s}+\sum_{v^{\prime} c^{\prime} \mathbf{k}^{\prime}}\langle v c \mathbf{k}| K_{v c v^{\prime}, v^{\prime} c^{\prime} \mathbf{k}^{\prime}}\left|v^{\prime} c^{\prime} \mathbf{k}^{\prime}\right\rangle A_{v c \mathbf{k}}^{s}=E_{X}^{S} A_{v c \mathbf{k}}^{s} \tag{5}
\end{equation*}
$$

in which S is each exciton (i.e., a pair state with a distinct principal quantum number and momentum wave-vector difference between v and c), E_{X} is the excitonic energy that is obtained by diagonalizing this Hamiltonian and $A_{v c k}^{s}$ is the excitonic amplitude in the electron-hole basis and contains the light polarization direction. As the momentum wave-vector difference is zero for vertical transitions, therefore excitons with such transitions (bright excitons) are only detectable. The resonant Green's propagator is then

$$
\begin{equation*}
\mathcal{L}_{v c, v^{\prime} c^{\prime}}(\omega)=\sum_{S} \frac{A_{v c \mathbf{k}^{s}} A_{v^{\prime} c^{\prime} \mathbf{k}^{\prime}}^{S *}}{\omega-E_{X}+i \eta} \tag{6}
\end{equation*}
$$

The numerator can be obtained via residue theorem and signifies the exciton oscillator strength. The macroscopic dielectric function (i.e., the absorption spectra) is thus evaluated in limit of long wavelength $\mathbf{q} \rightarrow 0$ [1]

$$
\begin{equation*}
\varepsilon_{M}(\omega)=1-\lim _{\mathbf{q} \rightarrow 0}\left(\frac{8 \pi}{|q|^{2} \Omega}\right) \sum_{v c k} \sum_{v^{\prime} c^{\prime} k^{\prime}}\langle v \mathbf{k}-\mathbf{q}| e^{-i \mathbf{q} \mathbf{r}}|c \mathbf{k}\rangle \times\left\langle c^{\prime} \mathbf{k}^{\prime}\right| e^{i \mathbf{q} \mathbf{r}}\left|v^{\prime} \mathbf{k}^{\prime}-\mathbf{q}\right\rangle \sum_{S}\left(\frac{A_{v c \mathbf{k}}^{S} A_{v^{\prime} c^{\prime} \mathbf{k}^{\prime}}^{S *}}{\omega-E_{X}+i \eta}\right) \tag{7}
\end{equation*}
$$

[^0]This is also the linear response function $\chi_{i j}^{(1)}(\omega)$.
In order to analyse if the exciton is "Frenkel" or "Wannier"-type, the exciton wave-function is needed. This can be written as

$$
\begin{equation*}
\left|\Phi^{S}\left(\mathbf{r}_{e}, \mathbf{r}_{h}\right)\right\rangle=\sum_{v c \mathbf{k}} A_{v c \mathbf{k}}^{S} \phi_{v \mathbf{k}}\left(\mathbf{r}_{e}\right) \phi_{c \mathbf{k}}\left(\mathbf{r}_{h}\right) \tag{8}
\end{equation*}
$$

in which \mathbf{r}_{e} and \mathbf{r}_{h} are the electron and hole coordinates in real-space. We note that the evaluation of this wave-function would require six-coordinates.
[1] M. Rohlfing and S. G. Louie, Phys. Rev. B 62, 4927 (2000).
[2] A. Marini and R. DelSole, Phys. Rev. Lett. 91, 176402 (2003).

[^0]: * Corresponding Author's Email: sitangshu@iiita.ac.in

