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I. EXCITON AFFAIRS IN CRYSTAL: BETHE SALPETER EQUATION OF MOTION

Excitonic affairs are governed by a two-particle (electron and hole) Dyson-like equation of motion. In a ladder-
approximation representation [1],
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are the interacting and non-interacting two-particle Green’s propagator respec-

tively. The variable “(1)” (and similar others) is a short hand notation for the spatial, spin and four time (two creation
and two annihilation) coordinates: (1) ≡ (r1, σ1, t1) respectively. In case of occupied (v) and unoccupied (c) states, L0

in Fourier transform plane has the form
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Note here that the four time variables are now decomposed in a single frequency in the ω plane.
The kernel Kvckv′c′k′ is a functional static quantity and is the sum of a bare exchange Coulomb repulsion and statically
screened Coulomb attraction between the electron and hole. The latter is represented as
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while the former is
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where Ω in this case is the cell volume. K is thus defined as Kvck;v′c′k′ =
〈

vck |W− 2V | v′c′k′
〉

. It is in this statically
screened kernel W in which the G0W0 QP energies are included to get the correct transition energies. Note that in order
to obtain a solvable BSE [2], W is approximated to be a static, which can be borrowed from the preceding dynamic
screening calculations in G0W0 simply by putting ω=0.
Assuming that the off-diagonal elements in the self-energies are small which consequently makes the total Hamiltonian
to be a Hermitian and the QP states orthogonal, the exciton EOM (i.e., the BSE) becomes [1]
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in which S is each exciton (i.e., a pair state with a distinct principal quantum number and momentum wave-vector
difference between v and c), EX is the excitonic energy that is obtained by diagonalizing this Hamiltonian and As

vck

is the excitonic amplitude in the electron-hole basis and contains the light polarization direction. As the momentum
wave-vector difference is zero for vertical transitions, therefore excitons with such transitions (bright excitons) are only
detectable. The resonant Green’s propagator is then

Lvc,v′c′ (ω) =
∑

S

AvckSAS∗
v′c′k′

ω − EX + iη
(6)

The numerator can be obtained via residue theorem and signifies the exciton oscillator strength. The macroscopic
dielectric function (i.e., the absorption spectra) is thus evaluated in limit of long wavelength q → 0 [1]
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This is also the linear response function χ
(1)
ij (ω).

In order to analyse if the exciton is “Frenkel” or “Wannier”-type, the exciton wave-function is needed. This can be
written as
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in which re and rh are the electron and hole coordinates in real-space. We note that the evaluation of this wave-function
would require six-coordinates.
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