Problem Set- VI

1. Prove that
(a) Every positive definite matrix is invertible.
(b) The only positive definite projection matrix is identity matrix.
2. Prove that a positive definite matrix cannot have a zero (or a negative number) on its diagonal.
(i) $\left[\begin{array}{ccc}2 & -1 & b \\ -1 & 2 & -1 \\ b & -1 & 2\end{array}\right]$,
(ii) $\left[\begin{array}{lll}b & 2 & 2 \\ 2 & b & 2 \\ 2 & 2 & b\end{array}\right]$,
(iii) $\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & b & 8 \\ 4 & 8 & 7\end{array}\right]$
3. Determine whether the following matrices are positive definite, positive semi definite, negative definite, negative semi definite, or indefinite.
(i) $\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$, (ii) $\left[\begin{array}{ccc}-2 & 0 & -1 \\ 0 & -2 & -1 \\ -1 & -1 & -3\end{array}\right]$, (iii) $\left[\begin{array}{ccc}-2 & 4 & -1 \\ 4 & -2 & -1 \\ -1 & -1 & -2\end{array}\right]$, (iv) $\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & 4 & -2 \\ -1 & -2 & -4\end{array}\right]$.
4. Identify the following curves and surfaces
(a) $16 x^{2}-24 x y+9 y^{2}-104 x-172 y+44=0$
(b) $3 x^{2}+2 y^{2}+3 z^{2}-2 z x+2 x-2=0$
5. Find the singular values and singular value decomposition (SVD) of the following matrices:
(i) $\left[\begin{array}{ccc}3 & 2 & 2 \\ 2 & 3 & -2\end{array}\right]$, (ii) $\left[\begin{array}{ccc}0 & 1 & 1 \\ \sqrt{2} & 2 & 0 \\ 0 & 1 & 1\end{array}\right]$, (iii) $\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$.
6. Find the Jordan canonical form of the matrix satisfying the given conditions:
(a) A is 3×3 with $p_{A}(\lambda)=(-2-\lambda)^{3}$ and $m_{A}(\lambda)=(\lambda+2)^{2}$.
(b) A is 3×3 with $p_{A}(\lambda)=(2-\lambda)^{3}$ and $m_{A}(\lambda)=(\lambda-2)^{2}$.
(c) A is 6×6 with $p_{A}(\lambda)=(5-\lambda)^{3}(4-\lambda)^{2}(3-\lambda)$ and $m_{A}(\lambda)=(\lambda-5)^{2}(\lambda-4)^{2}(\lambda-3)$. The matrix $A-5 I$ has rank 4 .
(d) A is 6×6 with $p_{A}(\lambda)=(5-\lambda)^{4}(-4-\lambda)^{2}$ and $m_{A}(\lambda)=(\lambda-5)^{2}(\lambda+4)^{2}$. The matrix $A-5 I$ has rank 3 .
7. Find the Jordan canonical form J of the following matrices and find a non-singular matrix P with $P-1 A P=J:\left(\right.$ i) $\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2\end{array}\right]$, (ii) $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$.
