Problem Set-V

All notations are standard and are given explicitly in the last page of this sheet.

1. Suppose V is a vector space over \mathbb{F}. Let $<,>: V \times V \longrightarrow \mathbb{F}$ be defined as follows:
(a) $\langle\rangle:, \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}$ defined by $\langle\tilde{x}, \tilde{y}\rangle=\tilde{x} \tilde{y}^{t}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}$.
(b) $\langle\rangle:, \mathbb{C}^{n} \times \mathbb{C}^{n} \longrightarrow \mathbb{C}$ defined by $\langle\tilde{x}, \tilde{y}\rangle=\tilde{x} \tilde{y}^{t}$.
(c) $\langle\rangle:, \mathbb{C}^{n} \times \mathbb{C}^{n} \longrightarrow \mathbb{C}$ defined by $\langle\tilde{x}, \tilde{y}\rangle=\tilde{x} \tilde{y}^{*}$.
(d) $\langle\rangle:, \mathbb{R}^{2} \times \mathbb{R}^{2} \longrightarrow \mathbb{R}$ defined by $\langle\tilde{x}, \tilde{y}\rangle=x_{1} y_{1}-2 x_{1} y_{2}-2 y_{1} x_{2}+9 x_{2} y_{2}$.
$(\mathrm{e})\langle\rangle:, \mathbb{R}^{3} \times \mathbb{R}^{3} \longrightarrow \mathbb{R}$ by $\left\langle\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right\rangle=x_{1} y_{1}+x_{2} y_{1}+x_{1} y_{2}+2 x_{2} y_{2}+$ $3 x_{3} y_{2}+3 x_{2} y_{3}+9 x_{3} y_{3}$.
$(\mathrm{f})\langle\rangle:, M_{n}(\mathbb{R}) \times M_{n}(\mathbb{R}) \longrightarrow \mathbb{R}$ defined by $\langle A, B\rangle=\operatorname{trace}\left(A B^{t}\right)$.
$(\mathrm{g})\langle\rangle:, P_{1}(\mathbb{R}) \times P_{1}(\mathbb{R}) \longrightarrow \mathbb{R}$ defined by $\langle p(x), q(x)\rangle=\int_{0}^{1} p(x) q(x) d x$.
Check whether the given function defines an inner product on V or not.
2. Let A be a 2×2 matrix with real entries. Define a map \langle,$\rangle from \mathbb{R}^{2} \times \mathbb{R}^{2}$ to \mathbb{R} by $\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=\left(\begin{array}{ll}x_{1} & x_{2}\end{array}\right) A\binom{y_{1}}{y_{2}}$. Show that \langle,$\rangle is an inner product on \mathbb{R}^{2}$ iff $A=A^{T}, a_{11}>0, a_{22}>0$ and $\operatorname{det}(A)>0$.
3. Let V be a real or complex vector space with an inner product. Show that $\|x-y\|^{2}+$ $\|x+y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$, for every $x, y \in V$. This is called parallelogram law.
4. (a) If V is a real inner product space, then for any $x, y \in V$, we have $\langle x, y\rangle=$ $\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)$.
(b) If V is a complex inner product space, then for any $x, y \in V$, we have $\langle x, y\rangle=$ $\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}\right)$.
5. Let V be a real inner product space.
(a) Show that $x-y \perp x+y$ iff $\|x\|=\|y\|$ (The geometric meaning of this is that a parallelogram is a rhombus iff the diagonal are perpendicular).
(b) Let V be a real inner product. Show that $x \perp y$ iff $\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}$ (This is Pythagoras theorem and its converse).
(c) Show that if $\|x+y\|=\|x\|+\|y\|$, one is scalar multiple of the other.
6. Apply Gram-Schmidt process to obtain an orthonormal set:
(a) $\{(-1,0,1),(1,-1,0),(0,0,1)\}$ in \mathbb{R}^{3} with usual inner product
(b) $\left\{1, p_{1}(t)=t, p_{2}(t)=t^{2}\right\}$ of $\mathbb{P}_{2}(\mathbb{R})$ with inner product $\langle p, q\rangle=\int_{0}^{1} p(t) q(t) d t$
(c) $\{(1,-1,1,-1),(5,1,1,1),(2,3,4,-1)\}$ in \mathbb{R}^{4} with usual inner product
7. Let $V=C([0,1])$ with inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$. Find the orthogonal complement of the subspace of polynomial functions.
8. Let $V=M_{n}(\mathbb{C})$ with the inner product $\langle A, B\rangle=\operatorname{tr}\left(A B^{*}\right)$. Find the orthogonal complement of the subspace of diagonal matrices.
9. Let W be a subspace of a finite dimensional inner product space V and $x \in V$ such that $\langle x, y\rangle+\langle y, x\rangle \leq\langle y, y\rangle$ for all $y \in W$. Show that $x \in W^{\perp}$.
10. Consider the subspace $W=\{(x, y, z, w) \mid x+2 y+z+w=0=x+y-2 z, w=0\}$ of the standard inner product space \mathbb{R}^{4}. Find an orthonormal basis of W and W^{\perp}.
11. Consider \mathbb{R}^{4} with the usual inner product. Let W be the subspace of \mathbb{R}^{4} consisting of all vectors which are orthogonal to both $(1,0,-1,1)$ and $(2,3,-1,2)$. Find an orthonormal basis of W.
12. Find the projection of $v=(3+4 i, 2-3 i)$ along the vector $w=(5+i, 2 i)$ in \mathbb{C}^{2} over \mathbb{C}.
13. Suppose $W=\left\{(x, y) \in \mathbb{R}^{2}: x+y=0\right\}$. Find the shortest distance of $(a, b) \in \mathbb{R}^{2}$ from W with respect to i) the standard inner product, ii) the inner product defined by $\left\langle\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\rangle=2 x_{1} x_{2}+y_{1} y_{2}$.

Note:

1. \tilde{x} - a vector in \mathbb{F}^{n}, i.e., $\tilde{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
2. A^{T} - transpose of a matrix A.
3. A^{*} - conjugate transpose of a matrix A.
4. $x \perp y$ means x is orthogonal to y i.e. $\langle x, y\rangle=0$.
5. W^{\perp} denotes orthogonal complement of W.
6. Let $f:[0,1] \longrightarrow \mathbb{R}$ be a continuous map such that $\int_{0}^{1} x^{n} f(x) d x=0$, for every $n \in$ $\mathbb{N} \cup\{0\}$. Then $f(x)=0$ for every $x \in[0,1]$.
7. The inner product defined by $\left\langle\left(x_{1}, x_{2}, \cdots, x_{n}\right),\left(y_{1}, y_{2}, \cdots, y_{n}\right)\right\rangle=x_{1} y_{1}+x_{2} y_{2}+\cdots+$ $x_{n} y_{n}$ is called usual inner product on \mathbb{R}^{n}.
8. The inner product defined by $\left\langle\left(z_{1}, z_{2}, \cdots, z_{n}\right),\left(w_{1}, w_{2}, \cdots, w_{n}\right)\right\rangle=z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}+\cdots+$ $z_{n} \bar{w}_{n}$ is called usual inner product on \mathbb{C}^{n}.
