Problem Set-V

All notations are standard and are given explicitly in the last page of this sheet.

- 1. Suppose V is a vector space over \mathbb{F} . Let $\langle , \rangle : V \times V \longrightarrow \mathbb{F}$ be defined as follows:
 - (a) $\langle , \rangle : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ defined by $\langle \tilde{x}, \tilde{y} \rangle = \tilde{x}\tilde{y}^t = x_1y_1 + x_2y_2 + \dots + x_ny_n$.
 - (b) $\langle,\rangle: \mathbb{C}^n \times \mathbb{C}^n \longrightarrow \mathbb{C}$ defined by $\langle \tilde{x}, \tilde{y} \rangle = \tilde{x}\tilde{y}^t$.
 - (c) $\langle,\rangle: \mathbb{C}^n \times \mathbb{C}^n \longrightarrow \mathbb{C}$ defined by $\langle \tilde{x}, \tilde{y} \rangle = \tilde{x}\tilde{y}^*$.
 - (d) $\langle,\rangle : \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by $\langle \tilde{x}, \tilde{y} \rangle = x_1 y_1 2x_1 y_2 2y_1 x_2 + 9x_2 y_2$.
 - (e) $\langle,\rangle : \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$ by $\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_1 y_1 + x_2 y_1 + x_1 y_2 + 2x_2 y_2 + 3x_3 y_2 + 3x_2 y_3 + 9x_3 y_3.$
 - (f) $\langle,\rangle: M_n(\mathbb{R}) \times M_n(\mathbb{R}) \longrightarrow \mathbb{R}$ defined by $\langle A, B \rangle = trace(AB^t)$.
 - (g) $\langle,\rangle: P_1(\mathbb{R}) \times P_1(\mathbb{R}) \longrightarrow \mathbb{R}$ defined by $\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x)dx$.

Check whether the given function defines an inner product on V or not.

- 2. Let A be a 2 × 2 matrix with real entries. Define a map \langle , \rangle from $\mathbb{R}^2 \times \mathbb{R}^2$ to \mathbb{R} by $\langle (x_1, x_2), (y_1, y_2) \rangle = \begin{pmatrix} x_1 & x_2 \end{pmatrix} A \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$. Show that \langle , \rangle is an inner product on \mathbb{R}^2 iff $A = A^T$, $a_{11} > 0, a_{22} > 0$ and det(A) > 0.
- 3. Let V be a real or complex vector space with an inner product. Show that $||x y||^2 + ||x + y||^2 = 2||x||^2 + 2||y||^2$, for every $x, y \in V$. This is called parallelogram law.
- 4. (a) If V is a real inner product space, then for any $x, y \in V$, we have $\langle x, y \rangle = \frac{1}{4}(||x+y||^2 ||x-y||^2).$
 - (b) If V is a complex inner product space, then for any $x, y \in V$, we have $\langle x, y \rangle = \frac{1}{4}(||x+y||^2 ||x-y||^2 + i||x+iy||^2 i||x-iy||^2).$
- 5. Let V be a real inner product space.
 - (a) Show that $x y \perp x + y$ iff ||x|| = ||y|| (The geometric meaning of this is that a parallelogram is a rhombus iff the diagonal are perpendicular).
 - (b) Let V be a real inner product. Show that $x \perp y$ iff $||x y||^2 = ||x||^2 + ||y||^2$ (This is Pythagoras theorem and its converse).
 - (c) Show that if ||x + y|| = ||x|| + ||y||, one is scalar multiple of the other.
- 6. Apply Gram-Schmidt process to obtain an orthonormal set:
 - (a) $\{(-1,0,1), (1,-1,0), (0,0,1)\}$ in \mathbb{R}^3 with usual inner product
 - (b) $\{1, p_1(t) = t, p_2(t) = t^2\}$ of $\mathbb{P}_2(\mathbb{R})$ with inner product $\langle p, q \rangle = \int_0^1 p(t)q(t)dt$
 - (c) $\{(1, -1, 1, -1), (5, 1, 1, 1), (2, 3, 4, -1)\}$ in \mathbb{R}^4 with usual inner product

- 7. Let V = C([0,1]) with inner product $\langle f,g \rangle = \int_0^1 f(x)g(x)dx$. Find the orthogonal complement of the subspace of polynomial functions.
- 8. Let $V = M_n(\mathbb{C})$ with the inner product $\langle A, B \rangle = tr(AB^*)$. Find the orthogonal complement of the subspace of diagonal matrices.
- 9. Let W be a subspace of a finite dimensional inner product space V and $x \in V$ such that $\langle x, y \rangle + \langle y, x \rangle \leq \langle y, y \rangle$ for all $y \in W$. Show that $x \in W^{\perp}$.
- 10. Consider the subspace $W = \{(x, y, z, w) \mid x + 2y + z + w = 0 = x + y 2z, w = 0\}$ of the standard inner product space \mathbb{R}^4 . Find an orthonormal basis of W and W^{\perp} .
- 11. Consider \mathbb{R}^4 with the usual inner product. Let W be the subspace of \mathbb{R}^4 consisting of all vectors which are orthogonal to both (1, 0, -1, 1) and (2, 3, -1, 2). Find an orthonormal basis of W.
- 12. Find the projection of v = (3 + 4i, 2 3i) along the vector w = (5 + i, 2i) in \mathbb{C}^2 over \mathbb{C} .
- 13. Suppose $W = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}$. Find the shortest distance of $(a, b) \in \mathbb{R}^2$ from W with respect to i) the standard inner product, ii) the inner product defined by $\langle (x_1, y_1), (x_2, y_2) \rangle = 2x_1x_2 + y_1y_2$.

Note:

- 1. \tilde{x} a vector in \mathbb{F}^n , i.e., $\tilde{x} = (x_1, x_2, \dots, x_n)$.
- 2. A^{T} transpose of a matrix A.
- 3. A^* conjugate transpose of a matrix A.
- 4. $x \perp y$ means x is orthogonal to y i.e. $\langle x, y \rangle = 0$.
- 5. W^{\perp} denotes orthogonal complement of W.
- 6. Let $f : [0,1] \longrightarrow \mathbb{R}$ be a continuous map such that $\int_0^1 x^n f(x) dx = 0$, for every $n \in \mathbb{N} \cup \{0\}$. Then f(x) = 0 for every $x \in [0,1]$.
- 7. The inner product defined by $\langle (x_1, x_2, \cdots, x_n), (y_1, y_2, \cdots, y_n) \rangle = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$ is called usual inner product on \mathbb{R}^n .
- 8. The inner product defined by $\langle (z_1, z_2, \cdots, z_n), (w_1, w_2, \cdots, w_n) \rangle = z_1 \bar{w}_1 + z_2 \bar{w}_2 + \cdots + z_n \bar{w}_n$ is called usual inner product on \mathbb{C}^n .