
Problem Set-V

All notations are standard and are given explicitly in the last page of this sheet.

1. Suppose V is a vector space over F. Let < , >: V × V −→ F be defined as follows:

(a) 〈, 〉 : Rn × Rn −→ R defined by 〈x̃, ỹ〉 = x̃ỹt = x1y1 + x2y2 + · · ·+ xnyn.

(b) 〈, 〉 : Cn × Cn −→ C defined by 〈x̃, ỹ〉 = x̃ỹt.

(c) 〈, 〉 : Cn × Cn −→ C defined by 〈x̃, ỹ〉 = x̃ỹ∗.

(d) 〈, 〉 : R2 × R2 −→ R defined by 〈x̃, ỹ〉 = x1y1 − 2x1y2 − 2y1x2 + 9x2y2.

(e) 〈, 〉 : R3 × R3 −→ R by 〈(x1, x2, x3), (y1, y2, y3)〉 = x1y1 + x2y1 + x1y2 + 2x2y2 +
3x3y2 + 3x2y3 + 9x3y3.

(f) 〈, 〉 : Mn(R)×Mn(R) −→ R defined by 〈A,B〉 = trace(ABt).

(g) 〈, 〉 : P1(R)× P1(R) −→ R defined by 〈p(x), q(x)〉 =
∫ 1

0
p(x)q(x)dx.

Check whether the given function defines an inner product on V or not.

2. Let A be a 2 × 2 matrix with real entries. Define a map 〈 , 〉 from R2 × R2 to R by

〈(x1, x2), (y1, y2)〉 =
(
x1 x2

)
A

(
y1
y2

)
. Show that 〈 , 〉 is an inner product on R2 iff

A = AT , a11 > 0, a22 > 0 and det(A) > 0.

3. Let V be a real or complex vector space with an inner product. Show that ||x− y||2 +
||x + y||2 = 2||x||2 + 2||y||2, for every x, y ∈ V . This is called parallelogram law.

4. (a) If V is a real inner product space, then for any x, y ∈ V , we have 〈x, y〉 =
1
4
(||x + y||2 − ||x− y||2).

(b) If V is a complex inner product space, then for any x, y ∈ V , we have 〈x, y〉 =
1
4
(||x + y||2 − ||x− y||2 + i||x + iy||2 − i||x− iy||2).

5. Let V be a real inner product space.

(a) Show that x− y ⊥ x + y iff ||x|| = ||y|| (The geometric meaning of this is that a
parallelogram is a rhombus iff the diagonal are perpendicular).

(b) Let V be a real inner product. Show that x ⊥ y iff ||x− y||2 = ||x||2 + ||y||2 (This
is Pythagoras theorem and its converse).

(c) Show that if ||x + y|| = ||x||+ ||y||, one is scalar multiple of the other.

6. Apply Gram-Schmidt process to obtain an orthonormal set:

(a) {(−1, 0, 1), (1,−1, 0), (0, 0, 1)} in R3 with usual inner product

(b) {1, p1(t) = t, p2(t) = t2} of P2(R) with inner product 〈p, q〉 =

∫ 1

0

p(t)q(t)dt

(c) {(1,−1, 1,−1), (5, 1, 1, 1), (2, 3, 4,−1)} in R4 with usual inner product
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7. Let V = C([0, 1]) with inner product 〈f, g〉 =
∫ 1

0
f(x)g(x)dx. Find the orthogonal

complement of the subspace of polynomial functions.

8. Let V = Mn(C) with the inner product 〈A,B〉 = tr(AB∗). Find the orthogonal
complement of the subspace of diagonal matrices.

9. Let W be a subspace of a finite dimensional inner product space V and x ∈ V such
that 〈x, y〉+ 〈y, x〉 ≤ 〈y, y〉 for all y ∈ W . Show that x ∈ W⊥.

10. Consider the subspace W = {(x, y, z, w) | x + 2y + z + w = 0 = x + y − 2z, w = 0} of
the standard inner product space R4. Find an orthonormal basis of W and W⊥.

11. Consider R4 with the usual inner product. Let W be the subspace of R4 consisting
of all vectors which are orthogonal to both (1, 0,−1, 1) and (2, 3,−1, 2). Find an
orthonormal basis of W .

12. Find the projection of v = (3 + 4i, 2− 3i) along the vector w = (5 + i, 2i) in C2 over C.

13. Suppose W = {(x, y) ∈ R2 : x + y = 0}. Find the shortest distance of (a, b) ∈ R2

from W with respect to i) the standard inner product, ii) the inner product defined by
〈(x1, y1), (x2, y2)〉 = 2x1x2 + y1y2.

Note:

1. x̃- a vector in Fn, i.e., x̃ = (x1, x2, . . . , xn).

2. AT - transpose of a matrix A.

3. A∗- conjugate transpose of a matrix A.

4. x ⊥ y means x is orthogonal to y i.e. 〈x, y〉 = 0.

5. W⊥ denotes orthogonal complement of W .

6. Let f : [0, 1] −→ R be a continuous map such that
∫ 1

0
xnf(x)dx = 0, for every n ∈

N ∪ {0}. Then f(x) = 0 for every x ∈ [0, 1].

7. The inner product defined by 〈(x1, x2, · · · , xn), (y1, y2, · · · , yn)〉 = x1y1 + x2y2 + · · · +
xnyn is called usual inner product on Rn.

8. The inner product defined by 〈(z1, z2, · · · , zn), (w1, w2, · · · , wn)〉 = z1w̄1 + z2w̄2 + · · ·+
znw̄n is called usual inner product on Cn.
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