Problem Set-4

1. Find the eigenvalues, eigenvectors and dimension of eigenspaces of the following operators.
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $T(x, y)=(x+y, x)$.
(b) $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ defined by $T\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{n}, x_{1}, \ldots, x_{n-1}\right)$.
(c) $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ defined by $T\left(z_{1}, z_{2}\right)=\left(z_{1}-2 z_{2}, z_{1}+2 z_{2}\right)$.
2. Let A and B be two similar matrices. Then show that
(a) A and B have same eigenvalues
(b) Let λ be an eigenvalue of A (and hence of B). Then $A M_{A}(\lambda)=A M_{B}(\lambda)$ and $G M_{A}(\lambda)=G M_{B}(\lambda)$, where $A M$ and $G M$ denote algebraic multiplicity and geometric multiplicity respectively.
3. Let $A \in M_{n}(\mathbb{R})$ and λ be eigenvalue of A. Let $g(x)=a_{0}+a_{1} x+\cdots,+a_{k} x^{k} \in \mathbb{R}[x]$. Then $g(\lambda)$ is an eigenvalue of $g(A)$.
4. Let A be $m \times n$ matrix and B be $n \times m$ matrix with $n \geq m$. Then eigenvalues of $B A$ are m eigenvalues of $A B$ with more $(n-m)$ zero eigenvalues.
5. All non-zero eigenvalues of a skew hermitian matrix are purely imaginary.
6. Let A and B be two 4×4 real matrices with $-1,2$ and 3 are three eigenvalues of $A B-B A$. Then find
(a) determinant of $A B-B A$
(b) determinant of $\operatorname{Adj}(A B-B A)$.
7. Let A be a 2×2 real matrix and suppose that $A^{2}=0$. Show that for each $c \in \mathbb{R}$, $\operatorname{det}\left(c I_{2}-A\right)=c^{2}$.
8. For any scalars a, b and c show that the matrices $A=\left[\begin{array}{ccc}b & c & a \\ c & a & b \\ a & b & c\end{array}\right]$ and $B=\left[\begin{array}{ccc}c & a & b \\ a & b & c \\ b & c & a\end{array}\right]$ are similar.
9. Let A be the 4×4 real matrix $\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0\end{array}\right]$. Find the characteristic polynomial and the minimal polynomial of A.
10. Show that every matrix A such that $A^{2}=A$ is similar to a diagonal matrix.
11. Find the eigenvalues and eigenvectors of the following matrices. Is A similar over \mathbb{R} to a diagonal matrix? Is A similar over \mathbb{C} to a diagonal matrix?
(a) $A=\left[\begin{array}{ccc}-7 & -16 & 4 \\ 6 & 13 & -2 \\ 12 & 16 & 1\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1\end{array}\right]$.
12. Find a basis B such that $[T]_{B}$ is a diagonal matrix in case T is diagonalizable. Find P such that $[T]_{B}=P[T]_{S} P^{-1}$, where S is the standard basis in each case.
(a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(5 x-6 y-6 z,-x+4 y+2 z, 3 x-6 y-4 z)$.
(b) $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ defined by $T(x, y)=(x \cos \theta+y \sin \theta,-x \sin \theta+y \cos \theta)$.
