Problem Set-3

- 1. Which of the following maps are linear.
 - (a) $T : \mathbb{R} \longrightarrow \mathbb{R}^3$ defined by T(x) = (x, 2x, 3x).
 - (b) $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined by T(x, y) = (2x + 3y, 3x 4y).
 - (c) $T : \mathbb{R}[x] \longrightarrow \mathbb{R}[x]$ defined by T(p(x)) = xp(x) + p(1).
 - (d) $T: C[0,1] \longrightarrow \mathbb{R}^2$ defined by T(f) = (f(0), f(1)).
- 2. Determine whether there exists a linear map in the following cases. If it exists, give the general formula.
 - (a) $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ such that T(1,2) = (3,0) and T(2,1) = (1,2).
 - (b) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ such that T(0, 1, 2) = (3, 1, 2) and T(1, 1, 1) = (2, 2, 2).
 - (c) $T: \mathbb{P}_4(\mathbb{R}) \longrightarrow \mathbb{P}_3(\mathbb{R})$ such that T(1+x) = 1, T(x) = 3 and $T(x^2) = 4$.
 - (d) $T: \mathbb{C}^2 \longrightarrow \mathbb{C}^2$ such that T(i, i) = (1 + i, 1).
- 3. Determine a linear map $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, which maps all the vectors on the line x + y = 0 onto themselves.
- 4. Determine the Range and Kernel of the following linear maps. Also find the Rank and Nullity of T, if it exists
 - (a) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined by $T(x_1, x_2) = (x_1 + x_2, x_1)$.
 - (b) $T : \mathbb{R}[x] \longrightarrow \mathbb{R}[x]$ defined by T(p(x)) = p''(x) 2p(x).
 - (c) $T: C(0,1) \longrightarrow C(0,1)$ defined by T(f)(x) = f(x) sinx.
 - (d) $T: C^1[0,1] \longrightarrow C[0,1]$ defined by $T(p(x)) = p'(x)e^x$, where $C^1[0,1]$ is the set of all continuous function from [0,1] to \mathbb{R} which are differentiable on (0,1). (Hint: Use Fundamental Theorem of Calculus)
- 5. Find a linear map $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ such that the set of all vectors (x_1, x_2, x_3) satisfying the equation $4x_1 3x_2 + x_3 = 0$ is the Kernel of T.
- 6. Let W be a subspace of \mathbb{R}^4 defined by $W = \{(x_1, x_2, x_3, x_4) | x_2 = 0\}$. Prove, by exhibiting an isomorphism, that $W \cong \mathbb{R}^3$.
- 7. True or false? Justify your answer.
 - (a) There exist two isomorphism from $\mathbb{P}_2(\mathbb{R})$ to \mathbb{R}^3 .
 - (b) In \mathbb{R}^2 all nontrivial subspaces are isomorphic.
- 8. Let T be a linear map on a finite dimensional vector space V. Then prove that
 - (a) $Range(T) \cap Ker(T) = \{0\}$ if and only if $T^2x = 0 \Rightarrow Tx = 0$.
 - (b) If $Rank(T^2) = Rank(T)$, then $Range(T) \cap Ker(T) = \{0\}$.
- 9. Let $T: V \longrightarrow V$ (V is a finite dimensional vector space) be a linear map. If $Range(T) \cap Ker(T) = \{0\}$, then $V = Range(T) \oplus Ker(T)$.
- 10. Let $T: U \longrightarrow V$ and $S: V \longrightarrow W$ be two linear maps. Then prove that
 - (a) If T is onto, then Rank(ST) = Rank(S).

- (b) If S is one-one, then Rank(ST) = Rank(T).
- 11. Let T be a linear map on \mathbb{R}^3 , defined by $T(x_1, x_2, x_3) = (3x_1, x_2, x_3)$. Show that T is invertible. Also find T^{-1} .
- 12. Let U and V be finite dimensional vector spaces over the field F such that dim(U) = dim(V) = p. If T is a linear map from U into V, the following are equivalent.
 - (a) T is non-singular.
 - (b) T is one one.
 - (c) T transforms linearly independent subsets of U into linearly independent subsets of V.
 - (d) T transforms every basis for U into a basis for V.
 - (e) T is onto.
 - (f) Rank(T) = p.
 - (g) Nullity(T) = 0.
 - (h) T^{-1} exists.
- 13. If a linear map T on V satisfies the condition $T^2 + I = T$, then prove that T^{-1} exists.
- 14. Consider non-zero finite dimensional real vector spaces V_1, V_2, V_3, V_4 and linear transformations $\phi_1 : V_1 \longrightarrow V_2, \phi_2 : V_2 \longrightarrow V_3$ and $\phi_3 : V_3 \longrightarrow V_4$ such that Ker $\phi_1 = \{0\}$, Range $\phi_1 =$ Ker ϕ_2 , Range $\phi_2 =$ Ker ϕ_3 , Range $\phi_3 = V_4$. Then find the value of $\sum_{i=1}^4 (-1)^i \dim V_i$.
- 15. Let $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the linear map defined by $T(x_1, x_2, x_3) = (3x_1 + x_3, 12x_1 + x_2, -x_1 + 2x_2 + 4x_3).$
 - (a) Find the matrix M of T relative to the basis B = (1, 0, 1), (-1, 2, 1), (2, 1, 1).
 - (b) Find the matrix N of T relative to the standard basis of \mathbb{R}^3 .
 - (c) Find a non singular matrix P such that $N = PMP^{-1}$.
- 16. Let $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be the linear map defined by $T(x_1, x_2, x_3) = (x_1 + x_2, 2x_3 x_1)$. Let $B = \{(1, 0, -1), (1, 1, 1), (1, 0, 0)\}$ be an ordered basis of \mathbb{R}^3 .
 - (a) Find the matrix M of T relative to the pair B and standard basis of \mathbb{R}^2 .
 - (b) Find the matrix N of T relative to the standard basis of \mathbb{R}^3 standard basis of \mathbb{R}^2 .
 - (c) Find a non singular 2×2 matrix P and a non singular 3×3 matrix Q such that N = PMQ.
- 17. Let A be an $n \times n$ invertible matrix.
 - (a) Let B be an $n \times k$ matrix. Show that $\operatorname{Rank}(AB) = \operatorname{Rank}(B)$.
 - (b) Let B be an $n \times n$ invertible matrix. Then show that $\operatorname{Rank}(AB) = \operatorname{Rank}(A) = \operatorname{Rank}(B)$.
- 18. Let $A \in M_{m \times n}(\mathbb{R})$. Then $\operatorname{Rank}(AA^t) = \operatorname{Rank}(A)$.
- 19. Let A be an $m \times n$ matrix and R be the RRE form of A. Then show that $\operatorname{Rank}(A) = \operatorname{Rank}(R)$.
- 20. Let $V = M_2(\mathbb{R})$ and $W = P_3(\mathbb{R})$ be two vector spaces over \mathbb{R} . Define the linear transformation $T: V \to W$ by

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = 2a + (b - d)x - (a + c)x^{2} + (a + b - c - d)x^{3}.$$

- (a) Find the matrix representation of T with respect to the standard ordered bases.
- (b) Find a basis for the range of T and a basis for the null space of T.
- (c) Find $\operatorname{Rank}(T)$ and $\operatorname{Nullity}(T)$.