Problem Set-3

1. Which of the following maps are linear.
(a) $T: \mathbb{R} \longrightarrow \mathbb{R}^{3}$ defined by $T(x)=(x, 2 x, 3 x)$.
(b) $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(2 x+3 y, 3 x-4 y)$.
(c) $T: \mathbb{R}[x] \longrightarrow \mathbb{R}[x]$ defined by $T(p(x))=x p(x)+p(1)$.
(d) $T: C[0,1] \longrightarrow \mathbb{R}^{2}$ defined by $T(f)=(f(0), f(1))$.
2. Determine whether there exists a linear map in the following cases. If it exists, give the general formula.
(a) $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ such that $T(1,2)=(3,0)$ and $T(2,1)=(1,2)$.
(b) $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ such that $T(0,1,2)=(3,1,2)$ and $T(1,1,1)=(2,2,2)$.
(c) $T: \mathbb{P}_{4}(\mathbb{R}) \longrightarrow \mathbb{P}_{3}(\mathbb{R})$ such that $T(1+x)=1, T(x)=3$ and $T\left(x^{2}\right)=4$.
(d) $T: \mathbb{C}^{2} \longrightarrow \mathbb{C}^{2}$ such that $T(i, i)=(1+i, 1)$.
3. Determine a linear map $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$, which maps all the vectors on the line $x+y=0$ onto themselves.
4. Determine the Range and Kernel of the following linear maps. Also find the Rank and Nullity of T, if it exists
(a) $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{1}\right)$.
(b) $T: \mathbb{R}[x] \longrightarrow \mathbb{R}[x]$ defined by $T(p(x))=p^{\prime \prime}(x)-2 p(x)$.
(c) $T: C(0,1) \longrightarrow C(0,1)$ defined by $T(f)(x)=f(x) \sin x$.
(d) $T: C^{1}[0,1] \longrightarrow C\left[0,1\right.$ defined by $T(p(x))=p^{\prime}(x) e^{x}$, where $C^{1}[0,1]$ is the set of all continuous function from $[0,1]$ to \mathbb{R} which are differentiable on $(0,1)$. (Hint: Use Fundamental Theorem of Calculus)
5. Find a linear map $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ such that the set of all vectors (x_{1}, x_{2}, x_{3}) satisfying the equation $4 x_{1}-3 x_{2}+x_{3}=0$ is the Kernel of T.
6. Let W be a subspace of \mathbb{R}^{4} defined by $W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{2}=0\right\}$. Prove, by exhibiting an isomorphism, that $W \cong \mathbb{R}^{3}$.
7. True or false? Justify your answer.
(a) There exist two isomorphism from $\mathbb{P}_{2}(\mathbb{R})$ to \mathbb{R}^{3}.
(b) In \mathbb{R}^{2} all nontrivial subspaces are isomorphic.
8. Let T be a linear map on a finite dimensional vector space V. Then prove that
(a) $\operatorname{Range}(T) \cap \operatorname{Ker}(T)=\{0\}$ if and only if $T^{2} x=0 \Rightarrow T x=0$.
(b) If $\operatorname{Rank}\left(T^{2}\right)=\operatorname{Rank}(T)$, then $\operatorname{Range}(T) \cap \operatorname{Ker}(T)=\{0\}$.
9. Let $T: V \longrightarrow V$ (V is a finite dimensional vector space) be a linear map. If Range $(T) \cap$ $\operatorname{Ker}(T)=\{0\}$, then $V=\operatorname{Range}(T) \oplus \operatorname{Ker}(T)$.
10. Let $T: U \longrightarrow V$ and $S: V \longrightarrow W$ be two linear maps. Then prove that
(a) If T is onto, then $\operatorname{Rank}(S T)=\operatorname{Rank}(S)$.
(b) If S is one-one, then $\operatorname{Rank}(S T)=\operatorname{Rank}(T)$.
11. Let T be a linear map on \mathbb{R}^{3}, defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}, x_{2}, x_{3}\right)$. Show that T is invertible. Also find T^{-1}.
12. Let U and V be finite dimensional vector spaces over the field F such that $\operatorname{dim}(U)=$ $\operatorname{dim}(V)=p$. If T is a linear map from U into V, the following are equivalent.
(a) T is non-singular.
(b) T is one one.
(c) T transforms linearly independent subsets of U into linearly independent subsets of V.
(d) T transforms every basis for U into a basis for V.
(e) T is onto.
(f) $\operatorname{Rank}(T)=p$.
(g) $\operatorname{Nullity}(T)=0$.
(h) T^{-1} exists.
13. If a linear map T on V satisfies the condition $T^{2}+I=T$, then prove that T^{-1} exists.
14. Consider non-zero finite dimensional real vector spaces $V_{1}, V_{2}, V_{3}, V_{4}$ and linear transformations $\phi_{1}: V_{1} \longrightarrow V_{2}, \phi_{2}: V_{2} \longrightarrow V_{3}$ and $\phi_{3}: V_{3} \longrightarrow V_{4}$ such that Ker $\phi_{1}=\{0\}$, Range $\phi_{1}=$ Ker ϕ_{2}, Range $\phi_{2}=\operatorname{Ker} \phi_{3}$, Range $\phi_{3}=V_{4}$. Then find the value of $\sum_{i=1}^{4}(-1)^{i} \operatorname{dim} V_{i}$.
15. Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be the linear map defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{3}, 12 x_{1}+x_{2},-x_{1}+\right.$ $\left.2 x_{2}+4 x_{3}\right)$.
(a) Find the matrix M of T relative to the basis $B=(1,0,1),(-1,2,1),(2,1,1)$.
(b) Find the matrix N of T relative to the standard basis of \mathbb{R}^{3}.
(c) Find a non singular matrix P such that $N=P M P^{-1}$.
16. Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be the linear map defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, 2 x_{3}-x_{1}\right)$. Let $B=\{(1,0,-1),(1,1,1),(1,0,0)\}$ be an ordered basis of \mathbb{R}^{3}.
(a) Find the matrix M of T relative to the pair B and standard basis of \mathbb{R}^{2}.
(b) Find the matrix N of T relative to the standard basis of \mathbb{R}^{3} standard basis of \mathbb{R}^{2}.
(c) Find a non singular 2×2 matrix P and a non singular 3×3 matrix Q such that $N=P M Q$.
17. Let A be an $n \times n$ invertible matrix.
(a) Let B be an $n \times k$ matrix. Show that $\operatorname{Rank}(A B)=\operatorname{Rank}(B)$.
(b) Let B be an $n \times n$ invertible matrix. Then show that $\operatorname{Rank}(A B)=\operatorname{Rank}(A)=\operatorname{Rank}(B)$.
18. Let $A \in M_{m \times n}(\mathbb{R})$. Then $\operatorname{Rank}\left(A A^{t}\right)=\operatorname{Rank}(A)$.
19. Let A be an $m \times n$ matrix and R be the RRE form of A. Then show that $\operatorname{Rank}(A)=\operatorname{Rank}(R)$.
20. Let $V=M_{2}(\mathbb{R})$ and $W=P_{3}(\mathbb{R})$ be two vector spaces over \mathbb{R}. Define the linear transformation $T: V \rightarrow W$ by

$$
T\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=2 a+(b-d) x-(a+c) x^{2}+(a+b-c-d) x^{3} .
$$

(a) Find the matrix representation of T with respect to the standard ordered bases.
(b) Find a basis for the range of T and a basis for the null space of T .
(c) Find $\operatorname{Rank}(T)$ and $\operatorname{Nullity}(T)$.

