Problem Set 2

1. Let $A \in M_{n}(\mathbb{R})$ and $c_{i j}$ be the determinant of the $(n-1) \times(n-1)$ matrix obtained from A by deleting the i-th row and the j-th column. Then (adj A) denotes the adjoint matrix of A which is given by $(\operatorname{adj} A)_{i j}=(-1)^{i+j} c_{j i}$. Then
(a) $\operatorname{det} A=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} c_{i j} \forall 1 \leq i \leq n$.
(b) $(\operatorname{adj} A) A=(\operatorname{det} A) I_{n}$.
(c) if A is invertible, then $A^{-1}=\frac{\operatorname{adj} A}{\operatorname{det} A}$.
(d) if A is an invertible matrix with integer entries, then A^{-1} has integer entries if and only if $\operatorname{det}(A)= \pm 1$.
2. Evaluate determinant of the following $n \times n$ matrix

$$
\begin{aligned}
& \text { (a) }\left(\begin{array}{ccccccc}
2 & -1 & 0 & 0 & \cdots & 0 & 0 \\
-1 & 2 & -1 & 0 & \cdots & 0 & 0 \\
0 & -1 & 2 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 2 & -1 \\
0 & 0 & 0 & 0 & \cdots & -1 & 2
\end{array}\right) . \\
& \text { (b) }\left(\begin{array}{ccccc}
1 & 2 & 3 & \cdots & n \\
2 & 2 & 3 & \cdots & n \\
3 & 3 & 3 & \cdots & n \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
n & n & n & \cdots & n
\end{array}\right) .
\end{aligned}
$$

3. For which of the following, V forms a vector space over \mathbb{R} ? If not, then justify your answer.
(a) $V=\mathbb{R}^{2}$ with addition: $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$ and scalar multiplication : $\alpha(x, y)=(\alpha x, y)$.
(b) $V=\mathbb{R}^{2}$ with addition : $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}-y_{2}\right)$ and scalar multiplication : $\alpha(x, y)=(\alpha x, \alpha y)$.
(c) $V=\{f(x) \in \mathbb{R}[x] \mid \operatorname{deg} f(x)>n\}$ with usual addition and scalar multiplication.
(d) $V=\left\{c_{1} e^{x}+c_{2} e^{3 x} \mid c_{1}, c_{2} \in \mathbb{R}\right\}$ with usual addition and scalar multiplication.
4. (a) Let $\mathbb{H}=\left\{\left.\left(\begin{array}{cc}a & b \\ -\bar{b} & \bar{a}\end{array}\right) \right\rvert\, a, b \in \mathbb{C}\right\}$. Show that \mathbb{H} is a vector space (under the usual matrix addition and scalar multiplication) over \mathbb{R}.
(b) Is \mathbb{H} a vector space over \mathbb{C} ?
5. Determine whether W is a subspace of $V(\mathbb{F})$. Justify your answer.
(a) $W=\left\{\bar{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1} \geq 0\right\}$ and $V=\mathbb{R}^{n}$ and $\mathbb{F}=\mathbb{R}$.
(b) $W=\left\{a_{0}+a_{1} x \mid a_{0}, a_{1} \in \mathbb{R}\right\}$ and $V=\mathbb{P}_{2}(\mathbb{R})$ and $\mathbb{F}=\mathbb{R}$.
(c) $W=\{A \in V| | A \mid=0\}$ and $V=M_{n}(\mathbb{R})$ and $\mathbb{F}=\mathbb{R}$.
(d) $W=\{p(x) \in V \mid p(0)=5\}$ and $V=\mathbb{P}_{2}(\mathbb{R})$ and $\mathbb{F}=\mathbb{R}$.
(e) $W=\{A \in V| | A \mid=1\}$ and $V=M_{n}(\mathbb{R})$ and $\mathbb{F}=\mathbb{R}$.
(f) $W=\{A \in V| | A \mid \neq 0\}$ and $V=M_{n}(\mathbb{R})$ and $\mathbb{F}=\mathbb{R}$.
6. Discuss the linear dependence/linear independence of the following sets:
(a) $S=\{(1,0,0),(1,1,0),(1,1,1)\}$ of $\mathbb{R}^{3}(\mathbb{R})$.
(b) $S=\{(1, i, 0),(1,0,1),(i+2,-1,2)\}$ of $\mathbb{C}^{3}(\mathbb{C})$.
(c) $S=\{(1, i, 0),(1,0,1),(i+2,-1,2)\}$ of $\mathbb{C}^{3}(\mathbb{R})$
7. Show that $C(X)$ is a vector space over \mathbb{R} with addition : $(f+g)(x)=f(x)+$ $g(x)$ and scalar multiplication : $(\alpha f)(x)=\alpha f(x)$. Also show that the set $S=$ $\{\sin x, \sin 2 x, \ldots, \sin n x\}$ is a linearly independent subset of $C([-\pi, \pi])$.
8. Show that $X=\{(1+i, 1-i),(1-i, 1+i),(2, i),(3,2 i)\}$ is linearly independent in $\mathbb{C}^{2}(\mathbb{R})$. Write $(a+i b, c+i d)$ as an \mathbb{R}-linear combination of vectors belonging to X.
9. Suppose $V=\mathbb{C}^{2}(\mathbb{C})$. Then
(a) Show that $\{(1+i, 2),(2,1)\}$ is linearly independent.
(b) Show that $\{(1,2),(0, i),(i, 1-i)\}$ is linearly dependent.
(c) Show that every ordered pair in \mathbb{C}^{2} can be written as a linear combination of $v_{1}=(1,2), v_{2}=(0, i), v_{3}=(i, 1-i)$ over \mathbb{C} in more than one ways.
10. Prove that the following set forms a subspace of $M_{n}(\mathbb{R})$, and find a basis and the dimension of each subspace.
(a) The set of all diagonal matrices.
(b) The set of all symmetric matrices.
(c) The set of all skew-symmetric matrices.
11. For which real number x, the vectors: $(x, 1,1,1),(1, x, 1,1),(1,1, x, 1),(1,1,1, x)$ do not form a basis of $\mathbb{R}^{4}(\mathbb{R})$? For each of the values of x that you find, what is the dimension of the subspace of \mathbb{R}^{4} that they span?
12. Let v_{1}, v_{2}, v_{3} and v_{4} be linearly independent. Justify if the following vectors are linear independent or not?
(a) $v_{1}+v_{2}, v_{2}+v_{3}, v_{3}-v_{4}$ and $v_{4}-v_{1}$.
(b) $v_{1}-v_{2}, v_{2}-v_{3}, v_{3}-v_{4}$ and $v_{4}-v_{1}$.
13. Find the dimension and a basis of the set of solutions of the system of equations
(a) $x_{1}+2 x_{2}=0, x_{2}-x_{3}=0, x_{1}+x_{2}+x_{3}=0$.
(b) $2 x_{1}+4 x_{2}-5 x_{3}+3 x_{4}=0,3 x_{1}+6 x_{2}-7 x_{3}+4 x_{4}=0,5 x_{1}+10 x_{2}-11 x_{3}+6 x_{4}=0$.
14. Prove that the following set of vectors in $\mathbb{R}^{n}(\mathbb{R})$ forms a subspace and find a basis and the dimension of each
(a) all n-vectors whose odd entries are equal
(b) all n-vectors whose odd entries are zero
(c) all n-vectors whose first and the last co-ordinates are equal.
15. Let V be a vector space of dimension $100, W_{1}$ and W_{2} are two subspaces of V of dimensions 60 and 63. What is the minimum dimension and the maximum dimension of $W_{1} \cap W_{2}$.
16. Let V be a vector space of dimension n. Let W_{1} be a subspace of dimension $n-1$ and W_{2} be a subspace of dimension r such that W_{2} is not contained in W_{1}. Then find the dimension of $W_{1} \cap W_{2}$.
17. Let V be a vector space of dimension n. Let W_{1} and W_{2} be distinct subspaces of dimension $n-1$ each. Then find the dimension of $W_{1} \cap W_{2}$.
18. Let W be a subspace of V.
(a) Prove that there is a subspace U of V such that $U+W=V$ and $U \cap W=\{0\}$.
(b) Prove that there is no subspace U such that $U \cap W=\{0\}$ and that $\operatorname{dim} W+$ $\operatorname{dim} U>\operatorname{dim} V$.
19. Find the coordinates of the polynomial $x^{5}-x^{4}+x^{3}-x^{2}+x+1$ with respect to the following ordered basis
(a) $\left\{1+x^{3}, x+x^{3}, x^{2}+x^{3}, x^{3}, x^{4}+x^{3}, x^{5}+x^{3}\right\}$ of $\mathbb{P}_{5}(\mathbb{R})$.
(b) $\left\{1, x+1, x^{2}+1, x^{3}+1, x^{4}+1, x^{5}+1\right\}$ of $\mathbb{P}_{5}(\mathbb{R})$.
