Problem Set 2

- 1. Let $A \in M_n(\mathbb{R})$ and c_{ij} be the determinant of the $(n-1) \times (n-1)$ matrix obtained from A by deleting the *i*-th row and the *j*-th column. Then (adj A) denotes the adjoint matrix of A which is given by $(adjA)_{ij} = (-1)^{i+j}c_{ji}$. Then
 - (a) det $A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} c_{ij} \ \forall 1 \le i \le n.$
 - (b) $(\operatorname{adj} A)A = (\det A)I_n$.
 - (c) if A is invertible, then $A^{-1} = \frac{\operatorname{adj} A}{\det A}$.
 - (d) if A is an invertible matrix with integer entries, then A^{-1} has integer entries if and only if $det(A) = \pm 1$.
- 2. Evaluate determinant of the following $n \times n$ matrix

	$\binom{2}{2}$	-1	0	0	•••	0	0 \	
(a)	-1	2	-1	0	• • •	0	0	
	0	-1	2	-1	• • •	0	0	
	:	:	÷	÷	·	÷	:	•
	0	0	0	0	•••	2	-1	
	0	0	0	0	•••	-1	2 /	
(b)	$(1 \ 2$	2 3		n				
	2 2	2 3	• • •	n				
	3 3	3 3	• • •	n				
		•••	÷	÷				
	n r	n n	•••	n				

- 3. For which of the following, V forms a vector space over \mathbb{R} ? If not, then justify your answer.
 - (a) $V = \mathbb{R}^2$ with addition : $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ and scalar multiplication : $\alpha(x, y) = (\alpha x, y)$.
 - (b) $V = \mathbb{R}^2$ with addition : $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 y_2)$ and scalar multiplication : $\alpha(x, y) = (\alpha x, \alpha y)$.
 - (c) $V = \{f(x) \in \mathbb{R}[x] \mid \deg f(x) > n\}$ with usual addition and scalar multiplication.
 - (d) $V = \{c_1 e^x + c_2 e^{3x} \mid c_1, c_2 \in \mathbb{R}\}$ with usual addition and scalar multiplication.
- 4. (a) Let $\mathbb{H} = \{ \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} \mid a, b \in \mathbb{C} \}$. Show that \mathbb{H} is a vector space (under the usual matrix addition and scalar multiplication) over \mathbb{R} .
 - (b) Is \mathbb{H} a vector space over \mathbb{C} ?
- 5. Determine whether W is a subspace of $V(\mathbb{F})$. Justify your answer.
 - (a) $W = \{ \bar{x} = (x_1, x_2, \cdots, x_n) \in \mathbb{R}^n \mid x_1 \ge 0 \}$ and $V = \mathbb{R}^n$ and $\mathbb{F} = \mathbb{R}$.

- (b) $W = \{a_0 + a_1x \mid a_0, a_1 \in \mathbb{R}\}$ and $V = \mathbb{P}_2(\mathbb{R})$ and $\mathbb{F} = \mathbb{R}$.
- (c) $W = \{A \in V \mid |A| = 0\}$ and $V = M_n(\mathbb{R})$ and $\mathbb{F} = \mathbb{R}$.
- (d) $W = \{p(x) \in V \mid p(0) = 5\}$ and $V = \mathbb{P}_2(\mathbb{R})$ and $\mathbb{F} = \mathbb{R}$.
- (e) $W = \{A \in V \mid |A| = 1\}$ and $V = M_n(\mathbb{R})$ and $\mathbb{F} = \mathbb{R}$.
- (f) $W = \{A \in V \mid |A| \neq 0\}$ and $V = M_n(\mathbb{R})$ and $\mathbb{F} = \mathbb{R}$.
- 6. Discuss the linear dependence/linear independence of the following sets:
 - (a) $S = \{(1,0,0), (1,1,0), (1,1,1)\}$ of $\mathbb{R}^3(\mathbb{R})$.
 - (b) $S = \{(1, i, 0), (1, 0, 1), (i + 2, -1, 2)\}$ of $\mathbb{C}^3(\mathbb{C})$.
 - (c) $S = \{(1, i, 0), (1, 0, 1), (i + 2, -1, 2)\}$ of $\mathbb{C}^3(\mathbb{R})$
- 7. Show that C(X) is a vector space over \mathbb{R} with addition : (f + g)(x) = f(x) + g(x) and scalar multiplication : $(\alpha f)(x) = \alpha f(x)$. Also show that the set $S = \{\sin x, \sin 2x, \dots, \sin nx\}$ is a linearly independent subset of $C([-\pi, \pi])$.
- 8. Show that $X = \{(1 + i, 1 i), (1 i, 1 + i), (2, i), (3, 2i)\}$ is linearly independent in $\mathbb{C}^2(\mathbb{R})$. Write (a + ib, c + id) as an \mathbb{R} -linear combination of vectors belonging to X.
- 9. Suppose $V = \mathbb{C}^2(\mathbb{C})$. Then
 - (a) Show that $\{(1+i,2), (2,1)\}$ is linearly independent.
 - (b) Show that $\{(1,2), (0,i), (i,1-i)\}$ is linearly dependent.
 - (c) Show that every ordered pair in \mathbb{C}^2 can be written as a linear combination of $v_1 = (1, 2), v_2 = (0, i), v_3 = (i, 1 i)$ over \mathbb{C} in more than one ways.
- 10. Prove that the following set forms a subspace of $M_n(\mathbb{R})$, and find a basis and the dimension of each subspace.
 - (a) The set of all diagonal matrices.
 - (b) The set of all symmetric matrices.
 - (c) The set of all skew-symmetric matrices.
- 11. For which real number x, the vectors: (x, 1, 1, 1), (1, x, 1, 1), (1, 1, x, 1), (1, 1, 1, x) do not form a basis of $\mathbb{R}^4(\mathbb{R})$? For each of the values of x that you find, what is the dimension of the subspace of \mathbb{R}^4 that they span?
- 12. Let v_1, v_2, v_3 and v_4 be linearly independent. Justify if the following vectors are linear independent or not?
 - (a) $v_1 + v_2, v_2 + v_3, v_3 v_4$ and $v_4 v_1$.
 - (b) $v_1 v_2, v_2 v_3, v_3 v_4$ and $v_4 v_1$.
- 13. Find the dimension and a basis of the set of solutions of the system of equations
 - (a) $x_1 + 2x_2 = 0, x_2 x_3 = 0, x_1 + x_2 + x_3 = 0.$
 - (b) $2x_1 + 4x_2 5x_3 + 3x_4 = 0$, $3x_1 + 6x_2 7x_3 + 4x_4 = 0$, $5x_1 + 10x_2 11x_3 + 6x_4 = 0$.

- 14. Prove that the following set of vectors in $\mathbb{R}^n(\mathbb{R})$ forms a subspace and find a basis and the dimension of each
 - (a) all *n*-vectors whose odd entries are equal
 - (b) all *n*-vectors whose odd entries are zero
 - (c) all *n*-vectors whose first and the last co-ordinates are equal.
- 15. Let V be a vector space of dimension 100, W_1 and W_2 are two subspaces of V of dimensions 60 and 63. What is the minimum dimension and the maximum dimension of $W_1 \cap W_2$.
- 16. Let V be a vector space of dimension n. Let W_1 be a subspace of dimension n-1 and W_2 be a subspace of dimension r such that W_2 is not contained in W_1 . Then find the dimension of $W_1 \cap W_2$.
- 17. Let V be a vector space of dimension n. Let W_1 and W_2 be distinct subspaces of dimension n-1 each. Then find the dimension of $W_1 \cap W_2$.
- 18. Let W be a subspace of V.
 - (a) Prove that there is a subspace U of V such that U + W = V and $U \cap W = \{0\}$.
 - (b) Prove that there is no subspace U such that $U \cap W = \{0\}$ and that dim $W + \dim U > \dim V$.
- 19. Find the coordinates of the polynomial $x^5 x^4 + x^3 x^2 + x + 1$ with respect to the following ordered basis
 - (a) $\{1 + x^3, x + x^3, x^2 + x^3, x^3, x^4 + x^3, x^5 + x^3\}$ of $\mathbb{P}_5(\mathbb{R})$.
 - (b) $\{1, x+1, x^2+1, x^3+1, x^4+1, x^5+1\}$ of $\mathbb{P}_5(\mathbb{R})$.