Notations:

 $\mathbb N$ - the set of all natural numbers

- \mathbbm{Z} the set of all integers
- $\mathbb Q$ the set of all rational numbers
- $\mathbb R$ the set of all real numbers
- $\mathbb C$ the set of all complex numbers
- \bar{a} complex conjugate of $a \in \mathbb{C}$
- A^t the transpose of the matrix A
- \overline{A} the complex conjugate of the matrix A
- |A| the determinant of the square matrix A

 $M_{m \times n}(S)$ - the set of all $m \times n$ matrices with entries in the set S, where $S = \mathbb{R}$ or \mathbb{C} $M_n(S)$ - the set of all $n \times n$ matrices with entries in the set S, where $S = \mathbb{R}$ or \mathbb{C} $GL_n(S) = \{A \in M_n(S) \mid |A| \neq 0\}$ - the set of all $n \times n$ invertible matrices with entries in the set S, where $S = \mathbb{R}$ or \mathbb{C} . This is called general linear group. $SL_n(S) = \{A \in M_n(S) \mid |A| = 1\}$ - the set of all $n \times n$ invertible matrices with determinant 1, where $S = \mathbb{R}$ or \mathbb{C} . This is called special general linear group. $S_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) \mid A^t = A\}$ - the set of all $n \times n$ symmetric matrices $SS_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) \mid A^t = -A\}$ - the set of all $n \times n$ skew-symmetric matrices $H_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid \overline{A^t} = -A\}$ - the set of all $n \times n$ skew-hermitian matrices $SH_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid \overline{A^t} = -A\}$ - the set of all $n \times n$ skew-hermitian matrices $SI_n(\mathbb{R}) = \{A \in M_n(\mathbb{C}) \mid \overline{A^t} = -A\}$ - the set of all $n \times n$ skew-hermitian matrices $SH_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid \overline{A^t} = -A\}$ - the set of all $n \times n$ skew-hermitian matrices $SI_n(\mathbb{R}) = \{A \in M_n(\mathbb{C}) \mid \overline{A^t} = -A\}$ - the set of all $n \times n$ skew-hermitian matrices $SI_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid \overline{A^t} = -A\}$ - the set of all $n \times n$ skew-hermitian matrices $SI_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid \overline{A^t} = -A\}$ - the set of all $n \times n$ skew-hermitian matrices $SI_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid \overline{A^t} = -A\}$ - the set of all $n \times n$ skew-hermitian matrices $SI_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid \overline{A^t} = -A\}$ - the set of all $n \times n$ skew-hermitian matrices $SI_n(S)$ - the set of all polynomials with coefficient from the S of degree $\leq n$

C(X) - the set of all continuous functions from the set X to \mathbb{R} i.e. the set of all real valued continuous functions on X

continuous functions on X

Problem Set- I

- 1. Show that $(M_{m \times n}(\mathbb{R}), +)$ is a group, where '+' denotes matrix addition. What can you say about the followings:
 - (a) $(M_n(\mathbb{R}), \cdot)$, where ' \cdot ' denotes matrix multiplication.
 - (b) $(GL_n(\mathbb{R}), \cdot)$, where $GL_n(\mathbb{R})$ is the collection of $n \times n$ invertible matrices and ' \cdot ' denotes matrix multiplication.
 - (c) $(SL_n(\mathbb{R}), \cdot)$, where $SL_n(\mathbb{R})$ is the collection of $n \times n$ matrices with determinant 1 and ' \cdot ' denotes matrix multiplication.
- 2. Let $A, B \in M_n(\mathbb{R})$.
 - (a) Show by an example that if $AB \neq BA$ then $(A + B)^2 = A^2 + 2AB + B^2$ need not hold.
 - (b) If AB = BA then show that $(A + B)^m = \sum_{i=0}^m {m \choose i} A^{m-i} B^i$.
- 3. Find all elements of S_3 (the set of all permutations of the set $\{1, 2, 3\}$) and determine which permutations are odd.
- 4. Let $\sigma \in S_5$ be given by $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{pmatrix}$. (a) Find sign of σ and σ^{-1} .

 - (b) Find $\sigma \circ \tau$ and $\tau \circ \sigma$, where $\tau = (1\,2\,3\,4\,5)$.
- 5. Denote an elementary row operation by ρ . If $A \in M_{m \times n}(\mathbb{R})$ then $\rho(A) = \rho(I) \cdot A$, where I is the $m \times m$ identity matrix.

6. Decide if they are row-equivalent: (i)
$$\begin{pmatrix} 1 & 2 \\ 4 & 8 \end{pmatrix}$$
 and $\begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$ (ii) $\begin{pmatrix} 1 & 0 & 2 \\ 3 & -1 & -1 \\ 5 & -1 & 5 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 4 \end{pmatrix}$

7. Which of the following matrices are elementary?

$$(i) \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} (ii) \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} (iii) \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} (iv) \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

- 8. Suppose Ax = b and Cx = b have same solutions for every b. Is it true that A = C?
- 9. Determine whether the given matrix is in row reduced echelon form, row echelon form, or neither /1 0 0 1 /1 0 0 0 ۵\ /1 1 0 0 1

$$(i) \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} (ii) \begin{pmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 \end{pmatrix} (iii) \begin{pmatrix} 1 & 0 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} (iv) \begin{pmatrix} 1 & -1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

10. Find a matrix in row echelon form that is equivalent to the given matrix. Give two possible answers in each.

$$(i) \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \\ 3 & 4 & 5 & 1 & 2 \\ 4 & 5 & 1 & 2 & 3 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix} (ii) \begin{pmatrix} 2 & 1 & 0 & 0 & 1 \\ 3 & 0 & 3 & 0 & 2 \\ 5 & 7 & -9 & 2 & 3 \end{pmatrix} (iii) \begin{pmatrix} 1 & 2 & 0 \\ 3 & 0 & 3 \\ 4 & 7 & -8 \end{pmatrix} (iv) \begin{pmatrix} 0 & 2 & 4 & 3 & 0 \\ 0 & 5 & 10 & 15/2 & 0 \\ 0 & 1 & 2 & 3/2 & 4 \\ 0 & 2 & 4 & 3 & 2 \end{pmatrix}$$

- 11. Describe explicitly all 2×2 , 3×2 and 3×3 row reduced echelon matrices.
- 12. Find the inverse of the following matrices using Gauss Jordon method. (i) $\begin{pmatrix} 2 & 1 & 2 \\ 1 & 0 & 5 \\ 2 & 5 & 11 \end{pmatrix}$ (ii) $\begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}$ (iii) $\begin{pmatrix} 1 & -3 & 2 \\ 2 & 0 & 0 \\ 1 & 4 & 1 \end{pmatrix}$ (iv) $\begin{pmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{pmatrix}$ (v) $\begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 2 \end{pmatrix}$
- 13. Find non-singular matrices P and Q so that PAQ is in normal form for the following matrices:

(i)
$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 2 & 3 & 1 & 4 \\ 1 & 2 & 2 & 3 \\ 0 & -1 & -3 & -2 \end{pmatrix}$

- 14. Let B be an invertible matrix. Then, prove that the system Ax = b and BAx = Bb are equivalent.
- 15. Let $\lambda = 2, 3, 5$. Find the all solutions of $AX = \lambda X$, where $A = \begin{pmatrix} 6 & -4 & 0 \\ 4 & -2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$.
- 16. For an $n \times n$ matrix A, show that the following statements are equivalent.
 - (a) A is invertible.
 - (b) The homogeneous system AX = 0 has only the trivial solution.
 - (c) The system AX = Y has a solution for each $n \times 1$ matrix Y.
- 17. An $n \times n$ matrix $A = (a_{ij})$ is called upper-triangular if $a_{ij} = 0$ for i > j i.e. if every entry below the main diagonal is 0. Prove that an upper-triangular matrix is invertible if and only if every entry on its main diagonal is different from 0.
- 18. Let A be an $m \times n$ matrix and B be an $n \times m$ matrix. Then prove that $I_m AB$ is invertible if and only if $I_n BA$ is invertible.
- 19. Find all the solutions of following system of linear equations using Gauss-Jordon elimination method, if exists:

(a)
$$x_1 - x_2 + 2x_3 = 1$$
, $2x_1 + 2x_3 = 1$, $x_1 - 3x_2 + 4x_3 = 2$
(b) $x_1 - 2x_2 + x_3 + 2x_4 = 1$, $x_1 + x_2 - x_3 + x_4 = 2$, $x_1 + 7x_2 - 5x_3 - x_4 = 3$
(c) $x_1 + 3x_2 - 2x_3 = 3$, $2x_1 + 6x_2 - 2x_3 + 4x_4 = 18$, $x_2 + x_3 + 3x_4 = 10$
(d) $5x_1 + 2x_2 + 7x_3 = 4$, $3x_1 + 26x_2 + 2x_3 = 9$, $7x_1 + 2x_2 + 10x_3 = 5$

(e) $x_2 + 4x_3 + 2x_4 = -5$, $x_1 + 3x_2 + 5x_3 + x_4 = -2$, $3x_1 + 7x_2 + 7x_3 - x_4 = 6$

(f)
$$2x_1 - 2x_2 + 4x_4 = 2$$
, $-x_1 + 3x_3 + x_4 = 6$, $6x_1 - 6x_2 + x_3 + 8x_4 = 3$

20. Find the condition on a so that the linear system

$$x + 2y - 3z = 2$$
, $2x + 6y - 11z = 4$, $x - 2y + 7z = a$

has a solution. Find the solution set.