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In this note, the solvability of the Pell equation, X2 − DY2 � 1, is discussed overZ × plZ. In particular, we show that this equation
is solvable over Z × plZ for each prime p and natural number l. Moreover, we show that solutions to the Pell equation over
Z × plZ are completely determined by the Fpl -continued fraction expansion of

��
D

√
.

1. Introduction

ADiophantine equation of the form X2 − DY2 � 1 is known
as the Pell equation, where D is a nonsquare positive integer.
Finding solutions to the Pell equation has always been an
interesting problem.

In this note, we look for solutions to the Pell equation,
X2 − DY2 � 1, in Z × plZ, where p is an odd prime and
l ∈ N. 'e problem has been discussed for p � 2 by the
authors in [1]. It is well known that X2 − DY2 � 1 is always
solvable in Z × Z. Suppose (X0, Y0) is a solution of X2 −

DY2 � 1 in Z × Z. 'en, (X1, Y1) is obtained by comparing
(X1 +

��
D

√
Y1) � (X0 +

��
D

√
Y0)

2l

, which is a solution of Pell
equation in Z × 2lZ. Given a solution (X1, Y1) ∈ Z × 2lZ,
one can find infinitely many solutions, (Xn+1, Yn+1) ∈ Z ×

2lZ for n≥ 0, by the following equation:

Xn+1 +
��
D

√
Yn+1􏼐 􏼑 � X1 +

��
D

√
Y1􏼐 􏼑

2n

. (1)

But this idea does not work for an odd prime. For in-
stance, let D � 5, then (X0, Y0) � (9, 4) and any solution of
the equation can be determined by computing
(X0 +

��
D

√
Y0)

i, where i≥ 1. Putting i � 3, we get a solution
(2889, 1292), which does not belong to Z × 3Z. One can see
that a solution obtained by computing (X0 +

��
D

√
Y0)

pl

does
not belong to Z × plZ, where (X0, Y0) is the minimal so-
lution of X2 − DY2 � 1. 'us, we raise a question to discuss
the solvability of X2 − DY2 � 1 in Z × plZ when p is an odd
prime.

In 2016, Luca et al. proposed a potentially interesting
problem related to the Pell equation. Suppose Z is a subset of
natural numbers. 'e problem can be stated as discussing
the solvability of the Pell equation over a favorable set of
Z × Z and finding D for which there are more than one
solution of the required form. A lot of development can be
seen in this direction [2–9]. One can consider a similar
problem with the second coordinate of the Pell equation.
Here, we discuss this problem when Z � Xpl , where

Xpl �
r

p
l
s
: r, s ∈ Z, s> 0, (r, ps) � 1

⎧⎨

⎩

⎫⎬

⎭ ∪ ∞{ }. (2)

Moreover, a solution to the Pell equation with the given
restriction is related to certain continued fractions.
Fpl-continued fractions and their properties have been
studied by Kushwaha et al. in [10–13]. A finite continued
fraction of the form

1
0+

p
l

b+

ε1
a1+

ε2
a2+

· · ·
εn

an

(n≥ 0) (3)

or an infinite continued fraction of the form

1
0+

p
l

b+

ε1
a1+

ε2
a2+

· · ·
εn

an+
· · · , (4)

where b is an odd integer, a1, a2, . . . are positive integers
coprime to p, and ε1, ε2, . . . ∈ ± 1{ }, with certain conditions
on ai and εi is called an Fpl-continued fraction. Every
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irrational number has a unique infinite Fpl-continued
fraction expansion. 'e expression

Pi

Qi

�
1
0+

p
l

b+

ε1
a1+

ε2
a2+

· · ·
εi

ai

(5)

for i≥ 0 is called the i-th Fpl-convergent which belongs to
Xpl , where

Xpl �
r

p
l
s
: r, s ∈ Z, s> 0, (r, ps) � 1

⎧⎨

⎩

⎫⎬

⎭ ∪ ∞{ }. (6)

'e Fpl-continued fractions also characterize best ap-
proximations of a real number by elements of Xpl , these
approximations are defined in the following way.

A rational number r/s ∈ Xpl is called the best approx-
imation of α by an element of Xpl , if for every r′/s′ ∈ Xpl

different from r/s with 0< s′ ≤ s, we have |sα − r|< |s′α − r′|.
Note that a solution (P, Q) ∈ Z × plZ to X2 − DY2 �

± 1 ensures that P/Q ∈ Xpl . 'us, we raise the question to
solve the Pell equation in Z × plZ by using Fpl-continued
fractions. 'e organization of this article is as follows:
Section 2 recalls the known properties of Fpl-continued
fractions. We derive certain results which we will use to
prove our main results. Section 3 deals with the question of
the periodicity of an Fpl-continued fraction. In particular,
we show that an irrational number has a periodic
Fpl-continued fraction if and only if it is a quadratic surd.
'e notion of pure periodicity ofFpl-continued fractions is
introduced, and related results are proved. In Section 4, we
achieve our main results related to the solvability of Pell’s
equation in Z × plZ. We conclude this section by adding a
remark on the contribution of our results to algebraic
number theory.

2. Preliminaries

We summarize the basic results of Fpl-continued fractions
(for more details refer to [11, 12]). For basic properties of
regular continued fractions and semi-regular continued
fractions we refer to [14, 15]. Furthermore, we derive certain
results related toFpl-continued fractions, which we will use
in the forthcoming sections.

Definition 1. Suppose p is a prime and l ∈ N. A finite
continued fraction of the form

1
0+

p
l

b+

ε1
a1+

ε2
a2+

· · ·
εn

an

(n≥ 0) (7)

or an infinite continued fraction of the form

1
0+

p
l

b+

ε1
a1+

ε2
a2+

· · ·
εn

an+
· · · , (8)

where b is an integer coprime to p, a1, a2, . . . are positive
integers, and ε1, ε2, . . . ∈ ± 1{ }, such that ai + εi+1 ≥ 1,
ai + εi ≥ 1, and gcd(Pi, Qi) � 1 with Pi � aiPi− 1 + εiPi− 2,
Qi � aiQi− 1 + εiQi− 2, (P− 1, Q− 1) � (1, 0), and (P0, Q0) �

(b, pl) is called an Fpl-continued fraction.

Given an Fpl-continued fraction

1
0+

p
l

b+

ε1
a1+

ε2
a2+

ε3
a3+

· · ·
εn

an+
· · · , (9)

the following continued fraction

εi

ai+

εi+1

ai+1+
· · ·

εn

an+
. . . (10)

is called the fin at the i-th stage of theFpl-continued fraction
for i≥ 1. Here, we record certain propositions describing
properties of Fpl-continued fractions.

Theorem 1 (see [11], 'eorem 3.2). Suppose x � 1/0+

pl/b+ε1/a1+ε2/a2+ε3/a3+ · · · is an Fpl -continued fraction
with the sequence of convergence Pi/Qi􏼈 􏼉i≥ − 1. Let yi be the
i-th fin of the continued fraction. ,en,

(1) PiQi− 1 − QiPi− 1 � ± pl

(2) i≥ 1, ai ≡ − εiPi− 2P
− 1
i− 1modp

(3) ,e sequence Qi􏼈 􏼉i≥ − 1 is strictly increasing
(4) Pi/Qi ≠Pj/Qj for i≠ j

(5) For i≥ 1, |yi|≤ 1
(6) For n≥ 0, x � xn+1Pn + εn+1Pn− 1/xn+1Qn + εn+1Qn− 1,

where xi � 1/|yi|, i≥ 0

Definition 2. Suppose x ∈ Xpl . An Fpl-continued fraction
of x not ending with 1/1 is said to be an Fpl-continued
fraction with a maximum +1 if it has the maximum number
of positive partial numerators excluding ε1, the first partial
numerator, among all its Fpl-continued fraction
expansions.

An infinite Fpl-continued fraction

1
0+

p
l

b+

ε1
a1+

ε2
a2+

· · ·
εn

an+
· · · (11)

is said to be anFpl-continued fraction with maximum +1 if

1
0+

p
l

b+

ε1
a1+

ε2
a2+

· · ·
εi

ai

(12)

is anFpl-continued fraction with a maximum +1 of the i-th
convergent unless (εi, ai) � (1, 1).

Theorem 2 (see [12],'eorem 3.6, Corollary 3.8). Suppose x

is an irrational number. ,en,

(1) ,ere is a uniqueFpl-continued fraction expansion of
x with maximum +1.

(2) ,e Fpl-continued fraction expansion

1
0+

p
l

b+

ε1
a1+

ε2
a2+

· · ·
εn

an

· · · . (13)

of x with maximum +1 is obtained as follows:

2 Journal of Mathematics



b �

⌊ p
l
x ⌋, if ⌊ p

l
x ⌋ + 1, p􏼐 􏼑≠ 1

⌊ p
l
x ⌋ + 1, if ⌊ p

l
x ⌋, p􏼐 􏼑≠ 1

⌊ p
l
x ⌋, if ⌊ p

l
x ⌋, p􏼐 􏼑 � 1 � ⌊ p

l
x ⌋ + 1, p􏼐 􏼑 andx<

⌊ p
l
x ⌋

p
l
⊕

⌊ p
l
x ⌋ + 1
p

l
.

⌊ p
l
x ⌋ + 1, if ⌊ p

l
x ⌋, p􏼐 􏼑 � 1 � ⌊ p

l
x ⌋ + 1, p􏼐 􏼑 andx>

⌊ p
l
x ⌋

p
l
⊕

⌊ p
l
x ⌋ + 1
p

l

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Set y1 � plx − b,

(a) εi � sign(yi).

(b)

ai �

⌈
1
yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− 1􏼠 􏼡 ⌉, if ⌈

1
yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− 1􏼠 􏼡 ⌉≢ − εipi− 2p

− 1
i− 1modp

⌊
1
yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
+ 1􏼠 􏼡 ⌋, otherwise.

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(15)

(c) yi+1 � 1/|yi| − ai.

Proposition 1 (see [12], Remark 2). Suppose x ∈ R has an
eventually constant Fpl-continued fraction. ,en, x ∈ Q if
and only if all but finitely many partial numerators are − 1
and all but finitely many partial denominators are 2.

Corollary 1. Suppose α is an irrational number. ,en, there
are infinitely many i ∈ N such that εi/ai ≠ − 1/2.

In Section 1, we introduced the definition of the best
approximation by an element inXpl . 'e following theorem
records the result on best approximation properties of
Fpl-continued fractions.

Definition 3. A rational number u/v ∈ Xpl is called a best
approximation of x ∈ R by an element of Xpl , if for every
u′/v′ ∈ Xpl different from u/v with 0< v′ ≤ v, we have
|vx − u|< |v′x − u′|.

Theorem 3 (see [12], 'eorem 4.9, 4.11). Suppose α is an
irrational number and r/s ∈ Xpl . ,en, r/s is a best ap-
proximation of α by an element of Xpl if and only if r/s is a
convergent of theFpl -continued fraction of α with maximum
+1.

Lemma 1. Let α be a real number and Pi/Qi be the sequence
of convergence of the Fpl -continued fraction of α with
maximum +1. Suppose Pn/Qn is anFpl -convergent of α with
εn+1/an+1 ≠ − 1/2. ,en,

α −
Pn

Qn

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<

p
l

Q
2
n

. (16)

Proof. Let yi denote the i-th fin of the Fpl-continued
fraction of α with maximum +1 and xi � 1/|yi|. By 'eorem
1 (6),

α �
xn+1Pn + εn+1Pn− 1

xn+1Qn + εn+1Qn− 1
. (17)

'us,

α −
Pn

Qn

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

xn+1Pn + εn+1Pn− 1

xn+1Qn + εn+1Qn− 1
−

Pn

Qn

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
εn+1 Pn− 1Qn − PnQn− 1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

xn+1Qn + εn+1Qn− 1( 􏼁Qn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
p

l

xn+1Qn + εn+1Qn− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌Qn

(byTheorem1(1)).

(18)

If εn+1 � 1, then xn+1Qn + εn+1Qn− 1 > qn. If εn+1 � − 1, we
claim that xn+1 ≥ 2. We know that xn+1 ≥ 1. Let 1≤ xn+1 < 2.
By 'eorem 2, an+1 � ⌈ (xn+1 − 1) ⌉ or an+1 � ⌊ (xn+1 + 1) ⌋

so that an+1 � 1 or 2. By definition of Fpl-continued frac-
tion, εn+1 + an+1 ≥ 1, since εn+1 � − 1, an+1 ≠ 1. By hypothesis,
εn+1/an+1 ≠ − 1/2 and hence an+1 ≠ 2. 'erefore, xn+1 ≥ 2 and
hence xn+1Qn + εn+1Qn− 1 > qn. 'us, we get |α − Pn/Qn|

<pl/Q2
n. □

Using Corollary 1, we have the following corollary of
Lemma 1:
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Corollary 2. Suppose α is an irrational number. ,en, there
are infinitely many r/s ∈ Xpl , such that |α − r/s|<pl/s2.

3. Periodic Fpl-Continued Fractions

An Fpl-continued fraction is called periodic of period
length m≥ 1 with an initial block of length n≥ 1, if yn ≠yn+r,
for r≥ 1, but yn+i � y(n+km)+i, that is,

εn+i � ε(n+km)+i and αn+i � a(n+km)+i, (19)

for 1≤ i≤m and k≥ 0. 'e continued fraction with no initial
block is called purely periodic. In this section, we discuss that
a periodic Fpl-continued fraction reaches a quadratic surd
and vice versa. Recall that a quadratic surd is a solution of a
quadratic equation Ax2 + Bx + c � C with integer coeffi-
cients A≠ 0, B, and C such that the discriminant D � B2 −

4AC is not a perfect square. Here, we record an observation,
which we will use further.

Lemma 2. A real number α is a quadratic surd if and only if
uα + v is a quadratic surd, where 0≠ u ∈ Q and v ∈ Q.

Lemma 3. Suppose α is an irrational number and yi is the
i-th fin of the Fpl-continued fraction expansion of α with

maximum +1. If yk � yr for some k, r with r> k. ,en,
yk+j � yr+j, for each j≥ 1. In particular, the continued
fraction is periodic.

Proof. By 'eorem 2, yk+1 � 1/|yk| − ak, where
ak ≡ − εkPk− 2P

− 1
k− 1modp. Note that εk � εr and yk+1 ≠yr+1 if

and only if ar � ak ± 1. Here, we get a contradiction to the
fact that |yr+1|< 1.'us, the statement is true for j � 1. Now,
suppose for each j> 1, yk+j � ym+j. 'e proof is by in-
duction. Using the fact that yi is irrational for each i≥ 1 and
applying the same idea as in the case when j � 1, we get
yk+j � yr+j for each j≥ 1. We can find the smallest n such
that yn+1 � ys+1 for some s> n (then, 1≤ n< k) and choose
the smallest m> n such that yn+1 � ym+1. 'us, the con-
tinued fraction is periodic of length m with initial block of
length n. □

Theorem 4. Suppose α is an irrational number. ,e
Fpl-continued fraction of α is periodic if and only if α is a
quadratic surd.

Proof. Suppose the Fpl-continued fraction of α is periodic
and given by

x �
1
0+

p
l

b+

ε1
a1+

· · ·
εn

an+

εn+1

an+1+
· · ·

εn+m

an+m+

εn+1

an+1+
· · ·

εn+m

an+m+

εn+1

an+1+
· · · , (20)

where n≥ 0 and m≥ 1. 'en, yn+1 � y(n+mk)+1, for k≥ 0. By
'eorem 1 (6), for i≥ 0,

α �
xi+1Pi + ε+1Pi− 1

xi+1Qi + εi+1Qi− 1
, (21)

where Pi/Qi is the i-th convergent, xi � 1/|yi|, and yi is the
i-th fin of the Fpl-continued fraction of α with maximum
+1. 'erefore, yi+1 � Pi − αQi/αQi− 1 − Pi− 1. Since yn+1 �

y(n+mk)+1, we get

Pn − αQn

αQn− 1 − Pn− 1
�

Pn+m − αQn+m

αQ(n+m)− 1 − P(n+m)− 1
, (22)

which gives that α is a root of a quadratic polynomial

Rx
2

+ Sx + t, (23)

where R � Qn− 1Qn+m − Qn+m− 1Qn, S � (QnPn+m− 1 − Pn+m

Qn− 1 + PnQn+m− 1 − Pn− 1Qn+m), and T � PnPn+m− 1 + Pn− 1
Pn+m. We have assumed that α is irrational, so it is a qua-
dratic surd. For the converse part, let us assume that α is a
quadratic surd. 'en, by Lemma 2, y1 � plα − b is also a

quadratic surd. 'us, there exists 0≠R0 ∈ Z and S0, T0 ∈ Z
such that

R0y
2
1 + S0y1 + T0 � 0. (24)

Let the Fpl-continued fraction of α is given by

α �
1
0+

p
l

b+

ε1
a1+

ε2
a2+

· · ·
εn

an+
· · · . (25)

'en, the semi-regular continued fraction

y1 �
ε1

a1+

ε2
a2+

· · ·
εn

an+
· · · . (26)

Let Pk/Qk and Ak/Bk denote the k-th convergent of the
Fpl-continued fraction of α and the corresponding con-
tinued fraction of y1, respectively. 'en, Pk � bBk + Ak and
Qk � plBk. If yk is the fin at the k-th stage for k≥ 1, then for
k≥ 1,

y1 �
Ak + yk+1Ak− 1

Bk + yk+1Bk− 1
. (27)

Replacing the value of y1 in (24), we get
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R0
Ak + yk+1Ak− 1

Bk + yk+1Bk− 1
􏼠 􏼡

2

+ S0
Ak + yk+1Ak− 1

Bk + yk+1Bk− 1
􏼠 􏼡 + T0 � 0,

R0 Ak + yk+1Ak− 1( 􏼁
2

+ S0 Ak + yk+1Ak− 1( 􏼁 Bk + yk+1Bk− 1( 􏼁 + T0 Bk + yk+1Bk− 1( 􏼁
2

� 0,

Rky
2
k+1 + Skyk+1 + Tk � 0,

(28)

where

Rk+1 � R0A
2
k− 1 + S0Ak− 1Bk− 1 + T0B

2
k− 1,

Sk+1 � 2AkAk− 1R0 + AkBk− 1 + BkAk− 1( 􏼁S0 + 2BkBk− 1T0,

Tk+1 � R0A
2
k + S0AkBk + T0B

2
k.

(29)

For k≥ 1,

S
2
k+1 − 4Rk+1Tk+1 � S

2
0 − 4R0T0. (30)

'us, the discriminant remains unchanged for each k.
We note that Rk+1 � Tk. If for a natural number k, Tk, and
Tk+1 are bounded, then Rk and Sk are also bounded since the
discriminant is bounded. Now, we claim that Tk is bounded
for every k ∈ Kα, where

Kα � k ∈ N|
εk+1

ak+1
≠

− 1
2
in theFpl − continued fractionof α􏼨 􏼩.

(31)

By Corollary 1, the cardinality of the set Kα is infinite. Let
k∗ ∈ Kα, then by Lemma 1

Qk∗α − Pk∗

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<

p
l

Qk∗

Bk∗y1 − Ak∗

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<

1
Bk∗

sincey1 � p
lα − b, P

∗
k � bB

∗
k + A
∗
k andQ

∗
k � p

l
B
∗
k􏼐 􏼑.

(32)

We can write Ak∗ � Bk∗y1 + δ/Bk∗ , for some δ with
|δ|< 1. Using this value, we get

Tk∗+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 2R0y1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + S0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + R0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (33)

Hence, Tk∗+1 is bounded. Now, we claim that Tk∗ is also
bounded for k∗ ∈ Kα. If εk∗/ak∗ ≠ − 1/2, then k∗ − 1 ∈ Kα,
and we are done. So, let εk∗/ak∗ � − 1/2. If yk∗+1 > 0, then
xk∗ > 2 as yk∗+1 � xk∗ − ak∗ and

Bk∗− 1y1 − Ak∗− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � Bk∗− 1
Ak∗− 1 − yk∗Ak∗ − 2

Bk∗− 1 + yk∗Bk∗− 2
􏼠 􏼡 − Ak∗− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
1

Bk∗ − 1 + yk∗Bk∗− 2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
sinceAk∗ − 1Bk∗ − 2 − Ak∗− 2Bk∗− 1 � ± 1

�
1

xk∗Bk∗− 1 − Bk∗− 2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
<

1
Bk∗− 1

.

(34)

Now, suppose yk∗+1 < 0, then ak∗+1 ≥ 3 so that xk∗+1 > 2
(reasoning is the same as in Lemma 1, and the fact that yk is
irrational) and equivalently |yk∗+1|< 1/2. We know that
1/|yk∗ | − 2 � yk∗+1 and |yk∗+1|< 1; therefore, 3/2< 1/|yk∗ |

< 5/2. Using this inequality, we get

Bk∗− 1y1 − Ak∗− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
1

Bk∗− 1xk∗ − Bk∗− 2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
<

2
Bk∗ − 1

. (35)

We apply the same method to get the boundedness of
Tk∗ as in the case of Tk∗+1, for each k∗ ∈ Kα. 'us, we get
Rk+1, Sk+1, andTk+1 are bounded for infinitely many k, that

is, for all k ∈ Kα, and the discriminant remains unchanged.
But there are only finitely many polynomials with a given
discriminant and bounded coefficients. 'us, the sequence
yk+1 with k ∈ Kα has entries from a finite set. 'us, there
exist integers r, s ∈ N with r< s such that yr+1 � ys+1. 'e
result is achieved by Lemma 3. □

Theorem 5. Suppose α is a quadratic surd with
0< α< 1/pl− 1. ,en, Fpl -continued fraction of α is purely
periodic if and only if α< 0.
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Proof. Suppose α is a quadratic surd with 0< α< 1/pl− 1 and
α< 0. Let us assume that the Fpl-continued fraction of α is
not purely periodic and it is given by

α �
1
0+

p
l

b+

ε1
a1+

· · ·
εm

an+

εn+1

an+1+
· · ·

εn+m

an+m+

εn+1

an+1+

εn+2

an+2+
· · ·

εn+m

an+m+
· · · ,

(36)

where n≥ 1, m≥ 1 with yn ≠yn+m, and yn+i � yn+m+i for i≥ 1.
'us, for i≥ 0,

α �
1
0+

p
l

b+

ε1
a1+

· · ·
εi

ai + yi+1
�

Pi + yi+1Pi− 1

Qi + yi+1Qi− 1
,

yi+1 �
Pi − Qiα

Qi− 1α − Pi− 1
.

(37)

We know that Pi > 0, (since α> 0) which gives that
yi+1 < 0 for i≥ 0. Furthermore, we claim that yi+1 < − 1. Note
that Pi � aiPi− 1 + εiPi− 2, and Pi ≥ b≥ 1,∀i≥ 0, so that
Pi ≥Pi− 1. Suppose − 1<yi+1 < 0, then − 1<Pi − Qiα/
Qi− 1α − Pi− 1 < 0, but Pi− 1 > 0, Qi >Qi− 1 and α< 0 give that
Pi− 1 >Pi, which is not possible. 'us, yi+1 < − 1 for i≥ 0.
Since yn+1 � yn+m+1, we get

εn

yn

−
εn+m

yn+m

� an+m − an. (38)

We note that yn < − 1 and yn+m < − 1, and so
− 2< εn/yn − εn+m/yn+m < 2. 'e RHS. of (38) is an integer.
We split the discussion into two cases. First, suppose
an+m ≠ an, then without the loss of generality, wemay assume
that εn/yn − εn+m/yn+m � 1. We know that |yn|< 1, and
hence, we get εn � 1 � εm+n. By (38), we get
yn � yn+m/yn+m + 1, but yn < − 1 and yn+m/yn+m + 1> 0,
which is not possible. Now, suppose an � an+m, then
εn ≠ εn+m. Again, by (38),

εn

yn

�
εn+m

yn+m

, (39)

which implies that yn and yn+m have different signs; hence,
we get a contradiction.

Now, for the converse part, we assume that α with
0< α< 1/pl has a purely periodic continued fraction. By
'eorem 4, we know that α is a quadratic surd. 'en, there
exists a positive integer m such that plα − b � ym+1 with

α �
Pm + ym+1Pm− 1

Qm + ym+1Qm− 1
, (40)

and so plQm− 1α2 + (Qm − bQm− 1 − plPm− 1)α + (bPm− 1−

Pm) � 0. If (Qm − bQm− 1 − plPm− 1)/plQm− 1 < 0, then we are
done. Let us suppose (Qm − bQm− 1 − plPm− 1)/plQm− 1 > 0.
'en, Qm/plQm− 1 > b/pl + Pm− 1/Qm− 1 > 2b − 1/pl and so
am ≥ 2b − 1 when εm � 1 and am ≥ 2b, when εm � − 1. Using
values of am and εm, we get bPm− 1 − Pm < 0, and hence
α< 0. □

Let D be a positive integer which is not a perfect square;
then, the irrational conjugate of

��
D

√
is negative. Hence, we

have the following corollary.

Corollary 3. Suppose D is a positive integer which is not a
perfect square. ,en, the Fpl-continued fraction of

��
D

√
is

purely periodic.

'e following proposition record the pattern of partial
numerator εi and denominator ai in the Fpl-continued
fraction expansion of

��
D

√
.

Proposition 2. Suppose D is a positive integer which is not a
perfect square. Let m be the period length of the Fpl -con-
tinued fraction of

��
D

√
. ,en, for m � 1, a1 � 2b with ε1 �

p2lD − b2 and for m> 1, am � 2b, ε1+i � εm− i , and ai � am− i

for an integer i, 1≤ i≤m/2.

Proof. Suppose m � 1. 'en y1 � pl
��
D

√
− b so that

��
D

√
�

1
0+

p
l

b+

ε1
a1 + p

l
��
D

√
− b􏼐 􏼑

. (41)

'us
��
D

√
is a root of the following polynomial:

p
2l

x
2

+ a1 − 2b( 􏼁p
l
x + b

2
− a1b − ε1􏼐 􏼑, (42)

and hence, a1 − 2b � 0; equivalently, a1 � 2b. Using the
value of a1, we get ε1 � p2lD − b2. Now, supposem> 1.'en,

p
l

��
D

√
− b �

ε1
a1+

ε2
a2+

· · ·
εm

am + p
l

��
D

√
− b􏼐 􏼑

. (43)

Let yi denotes the fin at the i-th stage, then

p
l

��
D

√
− b � y1 �

ε1
a1 + y2

, y2 �
ε2

a2 + y3
, . . . , ym

�
εm

am + y1
.

(44)

For i≥ 1, the number xi is given by

xi �
εi

yi

� ai +
εi+1

ai+1+

εi+2

ai+2
· · · . (45)

'en,

x1 � a1 +
ε2
x2

, x2 � a2 +
ε3
x3

, . . . , xm � am +
ε1
x1

, (46)

and equivalently,
− ε2
x2

� a1 − x1,
− ε3
x3

� a2 − x2, . . . ,
− ε1
x1

� am − xm. (47)

'us,
− ε1
x1

� am +
εm

am− 1+

εm− 1

am− 2+
· · ·

ε2
a1 − x1

. (48)

Note that − ε1/x1 � pl
��
D

√
+ b, or say, − ε1/x1−

2b � pl
��
D

√
− b. Using (43) and (48), we get am � 2b, εm � ε1.

Furthermore, using the fact that every irrational has a unique
Fpl-continued fraction with maximum +1, we get

ε1+i � εm− i and ai � am− i, (49)

for an integer i with 1≤ i≤m/2. □
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4. Pell Equation

In this section, D denotes a positive integer, which is not a
perfect square. By Corollary 3, theFpl-continued fraction is
purely periodic. For i≥ 0, Pi/Qi denotes the i-th convergent
of theFpl-continued fraction of

��
D

√
with maximum +1.'e

following theorem states that certain Fpl-convergence of��
D

√
serve as a solution to X2 − DY2 � 1.

Theorem 6. Suppose the Fpl -continued fraction of
��
D

√
is

periodic of length m.

(1) If m � 1, then

(a) If ε1 � − 1, each Pi/Qi is a solution to the Pell
equation X2 − DY2 � 1 for i≥ 0

(b) If ε1 � 1, each P2i+1/Q2i+1 is a solution to the Pell
equation X2 − DY2 � 1 for i≥ 0

(2)

(a) If m(> 1) is an odd number, then P2mk− 1/Q2mk− 1
is a solution to the Pell equation X2 − DY2 � 1,
for every k≥ 1

(b) If m(> 1) is an even integer, then Pmk− 1/Qmk− 1 is
a solution to the Pell equation X2 − DY2 � 1, for
every k≥ 1

Proof. Suppose the Fpl-continued fraction expansion of��
D

√
is given by

��
D

√
�

1
0+

p
l

b+

ε1
a1+

· · ·
εm

am+

ε1
a1+

· · ·
εm

am+

ε1
a1+

· · · . (50)

If m � 1, then by Proposition 2, P2
0 − DQ2

0 � − ε1. Fur-
thermore, we can write

��
D

√
�

1
0+

p
l

b+

ε1
a1 + p

l
��
D

√
− b􏼐 􏼑

or
��
D

√
�

P1 + p
l

��
D

√
− b􏼐 􏼑P0

Q1 + p
l

��
D

√
− b􏼐 􏼑Q0

.

(51)

On comparing rational and irrational parts, we get

P1 � p
2l

D + b
2
, andQ1 � 2bp

l
, (52)

so that P2
1 − DQ2

1 � (b2 − p2lD)2 � ε21. Now, suppose the
result is true up to some i> 1, that is, P2

i − DQ2
i � ± 1.

Again,

��
D

√
�

Pi+1 + p
l

��
D

√
− b􏼐 􏼑Pi

Qi+1 + p
l

��
D

√
− b􏼐 􏼑Qi

. (53)

On comparing rational and irrational parts, we get Pi+1 �

bPi + plDQi and Qi+1 � bQi + plPi so that

P
2
i+1 − DQ

2
i+1 � P

2
i − DQ

2
i􏼐 􏼑 b

2
− p

2l
D􏼐 􏼑 � − ε1 P

2
i − DQ

2
i􏼐 􏼑.

(54)

If ε1 � − 1, using induction hypothesis, we get that P2
i −

DQ2
i � 1 for i≥ 0. Suppose ε1 � 1, we note that P2

0 − DQ2
0 �

− 1 and P2
1 − DQ2

1 � 1. By the induction hypothesis, we as-
sume that P2

2i− 1 − DQ2
i− 1 � 1 and P2

2i − DQ2
2i � − 1. Using the

relation given in (54), we get P2
2i+1 − DQ2

2i+1 � 1 and
P2
2(i+1) − DQ2

2(i+1) � − 1, for i≥ − 1. Now, suppose m> 1.
'en, for k≥ 1,

��
D

√
�

Pmk + p
l

��
D

√
− b􏼐 􏼑Pmk− 1

Qmk + p
l

��
D

√
− b􏼐 􏼑Qmk− 1

. (55)

We get Qmk � bQmk− 1 + plPmk− 1 and Pmk � plDQmk− 1 +

bPmk− 1 so that

±pl
� QmkPmk− 1 − PmkQmk− 1 � p

l
P
2
mk− 1 − DQ

2
mk− 1􏼐 􏼑,

(56)

and hence, P2
mk− 1 − DQ2

mk− 1 � ± 1 for each k≥ 1. Set
B � pl(P2

mk− 1 − DQ2
mk− 1). If m is even, say m � 2m′, then

B � QmkPmk− 1 − PmkQmk− 1

� amkQmk− 1 + εmkQmk− 2( 􏼁Pmk− 1 − amkPmk− 1 + εmkPmk− 2( 􏼁Qmk− 1

� εmk Pmk− 1Qmk− 2 − Qmk− 1Pmk− 2( 􏼁

⋮

� εmεm− 1 · · · εm′+1εm′ · · · ε2ε1 Q0P− 1 − P0Q− 1( 􏼁

� ε1ε2 · · · εm′εm′ · · · ε2ε1 p
l

􏼐 􏼑.

. (57)

'us, (P2
mk− 1 − DQ2

mk− 1) � 1, if m is even. Now, suppose
m is odd and set B′ � pl(P2

2km− 1 − DQ2
2km− 1). 'en,
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B′ � Q2kmP2km− 1 − P2kmQ2km− 1

� a2kmQ2km− 1 + ε2kmQ2km− 2( 􏼁P2km− 1 − a2kmP2mk− 1 + ε2mkP2mk− 2( 􏼁Q2mk− 1

� ε2mk P2mk− 1Q2mk− 2 − Q2mk− 1P2mk− 2( 􏼁

⋮

� εmεm− 1 · · · ε1εm · · · ε2ε1 Q0P− 1 − P0Q− 1( 􏼁

� ε2mε
2
m− 1 · · · ε21 p

l
􏼐 􏼑.

. (58)

'us, (P2
2mk− 1 − DQ2

2mk− 1) � 1 for each k≥ 1 when m is
odd. □

Lemma 4. Suppose 0<K≤pl/2. Let r/pls ∈ Xpl be such that

p
l
sα − r

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<
K

p
l
s
. (59)

'en, r/pls is an Fpl-convergent of α.

Proof. Suppose u/plv ∈ Xpl with 0< v≤ s and |plvα − u|<
|plsα − r|. 'en,

p
l
vα − u

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<
K

p
l
s
. (60)

We have

1
p

l
vs
≤

u

p
l
v

−
r

p
l
s

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ α −

u

p
l
v

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ α −

r

p
l
s

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<

K

p
2l

sv
+

K

p
2l

s
2. (61)

'us, q> s(pl/K − 1). By assumption 0<K<pl/2, and
so v> s, which yields a contradiction.'us, u/plv ∈ Xpl with
0< v≤ s and |plvα − u|≥ |plsα − r| so that r/pls is the best
approximation of α by an element of Xpl and hence an
Fpl-convergent of α. □

Theorem 7. Let D be a positive integer which is not a perfect
square. Suppose (X, Y) ∈ Z × Z is a solution of the Pell
equation X2 − DY2 � ± 1 with Y ∈ plZ. ,en, X/Y is a
convergent of the Fpl -continued fraction of

��
D

√
with max-

imum +1.

Proof. Suppose (P, plQ) is a solution to X2 − DY2 � 1, then

P
2

− p
2l

DQ
2

� 1,

P − p
l
Q

��
D

√
􏼐 􏼑 P + p

l
Q

��
D

√
􏼐 􏼑 � 1,

P − p
l
Q

��
D

√
􏼐 􏼑

2
+ P − p

l
Q

��
D

√
􏼐 􏼑2p

l
Q

��
D

√
� 1,

P − p
l
Q

��
D

√
􏼐 􏼑p

l
Q<

1
2

��
D

√ .

(62)

We note that P − plQ
��
D

√
> 0, hence by Lemma 4, P/plQ is

an Fpl-convergent of
��
D

√
(since 1/2

��
D

√
< 1). □

Lemma 5. Suppose Pi/Qi denotes the i-th convergent of the
Fpl-continued fraction of

��
D

√
with maximum +1. ,en,

(1) P2
i − DQ2

i � P2
km+i − DQ2

mk+i, for 0≤ i≤ (m − 1)

(2) |P2
i − DQ2

i | � 1 if and only if i � mk − 1, for some
k ∈ N

(3) |P2
i − DQ2

i | � |P2
m− (i+2) − DQ2

m− (i+2)|, for 0≤ i≤
⌊ m/2 ⌋ − 1

Proof. Suppose i≥ 0, the i + 1-th fin is given by

yi+1 �

��
D

√
Qi − Pi

Pi− 1 −
��
D

√
Qi− 1

. (63)

We can write yi+1 in the following way:

yi+1 �
Mi+1 + p

l
��
D

√

Ni+1
, (64)

where Mi+1 � ± (PiPi− 1 − DQiQi− 1) and Ni+1 � ±
(P2

i− 1 − DQ2
i− 1). Since the continued fraction of

��
D

√
is purely

periodic of length m, yi � ykm+i, ∀1≤ i≤m and k≥ 0. On
comparing the rational and irrational parts, we get

Mi � Mmk+i andNi � Nmk+i. (65)

'us, P2
i− 1 − DQ2

i− 1 � P2
mk+(i− 1) − DQ2

mk+(i− 1), ∀1≤ i≤m

and k≥ 0, and we get the first statement. Now, suppose |P2
i −

DQ2
i | � 1 so that |Ni+2| � 1. 'en,

yi+2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � Mi+2 + p
l

��
D

√􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< 1, (66)

and hence, − Mi+2 − 1<pl
��
D

√
< − Mi+2 + 1. For each i,

notice that Mi is an integer coprime to p. 'us, the above
inequality gives that Mi+2 � − b so that

yi+2 � p
l

��
D

√
− b � ymk+1, (67)

for each k≥ 0. 'us, we get i + 2 � mk + 1, equivalently,
i � mk − 1. 'e converse part the second statement is clear
from the proof of 'eorem 6. For the third statement, recall
that

ym− (i+1) �
εi+2 Pi +

��
D

√
Qi􏼐 􏼑

Pi+1 +
��
D

√
Qi+1

. (68)

Now, we can write
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P
2
m− (i+2) − DQ

2
m− (i+2) � Pm− (i+2) +

εi+2 Pi +
��
D

√
Qi􏼐 􏼑

Pi+1 +
��
D

√
Qi+1

Qm− (i+2)
⎛⎝ ⎞⎠A,

(69)

where A � (Pm− (i+2) +
��
D

√
Qm− (i+2)) and 0≤ i≤ ⌊ m/2 ⌋ − 1.

Using the value of ym− (i+1) and comparing the rational and
irrational terms, we get

B Qm− (i+2)Pi+1 + Qm− (i+3)Pi􏼐 􏼑 � ± εi+2 PiPm− (i+2) + DQiQm− (i+2)􏼐 􏼑, (70)

B Qm− (i+2)Qi+1 + Qm− (i+3)Qi􏼐 􏼑 � ± εi+2 PiQm− (i+2) + DQiPm− (i+2)􏼐 􏼑, (71)

where B � (P2
m− (i+2) − DQ2

m− (i+2)). By (70) and (71),

P
2
m− (i+2) − DQ

2
m− (i+2) � εi+2 P

2
i − DQ

2
i􏼐 􏼑, (72)

and hence |P2
m− (i+2) − DQ2

m− (i+2)| � |(P2
i − DQ2

i )|. □

Combining the results of 'eorems 6, 7, and Lemma 5,
we obtain our main result which can be stated as follows.

Theorem 8. Let p be an odd prime and l ∈ N. Suppose D is a
positive integer which is not a perfect square. ,en,

(1) ,e Pell equation X2 − DY2 � 1 is always solvable in
Z × plZ

(2) Let Pi/Qi denote the (i)-th convergent of the
Fpl -continued fraction of

��
D

√
with period m. ,en,

(a) If m is even, then the solution set of X2 − DY2 � 1
is given by

Pmk− 1, Qmk− 1( 􏼁|k ∈ N􏼈 􏼉. (73)

(b) If m> 1 is odd, then the solution set of X2 −

DY2 � 1 is given by

P2mk− 1, Q2mk− 1( 􏼁|k ∈ N􏼈 􏼉. (74)

Corollary 4. ,e number 1 + Dp2 is a complete square if and
only if Fp-continued fraction of

��
D

√
is periodic of length 1.

Remark 1. In algebraic number theory, Dirichlet’s unit
theorem states that the group of units with norm 1, sayU, of
Z[

��
D

√
] is an infinite cyclic group. Rewriting the Pell

equation as

(X +
��
D

√
Y)(X −

��
D

√
Y) � 1, (75)

it shows that a solution to this equation contributes to a non-
trivial unit in Z[

��
D

√
]. Given a solution (X1, Y1), one can

find infinitely many (Xn, Yn) by the following equation:

Xn +
��
D

√
Yn􏼐 􏼑 � X1 +

��
D

√
Y1􏼐 􏼑

n
. (76)

A solution (X, Y) to Pell equation with the smallest Y> 0
serves as a generator of U. Here, we look at a subgroup Upl

of U which is given by

Upl � X + Y
��
D

√
|X + Y

��
D

√
∈ U, Y ∈ p

l
Z􏽮 􏽯. (77)

'e group Upl is a cyclic group of infinite order and the
solution (P, Q) to the Pell equation in Z × plZ with the
smallest Q> 0 serves as its generator.

Example 1. 'e F3-continued fraction of
�
5

√
is

1
0+

3
7+

− 1
3+

1
2+

1
3+

1
14+

− 1
3+

1
2+

1
3+

1
14+

· · · . (78)

'e corresponding set of convergent is
7
3
,
20
9

,
47
21

,
161
72

,
2207
987

,
6460
2889

,
15127
6765

,
51841
23184

,
710647
317811

, . . .􏼚 􏼛. (79)

'e continued fraction is periodic of lengthm � 4, which
is even. 'e m − 1-th convergence is 161/72. 'en,
(161)2 − 5(72)2 � 1. 'us, we get our first solution to Pell
equation in Z × 3Z; now, the next solution is given by the 7-
th convergence which is 51841/23184. One can check that
(51841, 23184) also satisfies the Pell equation. We note that

(161 +
�
5

√
72)

2
� 25921 + 23184

�
5

√
+ 25920 � 51841

+ 23184
�
5

√
.

(80)

'us, (51841, 23184) is obtained by (161, 72) by com-
paring the rational and irrational part of (161 +

�
5

√
72)2.

Other solutions can be obtained by the rational and irra-
tional part of (161 +

�
5

√
72)n, where n ∈ N.

Example 2. Let D � 455, p � 3.'en, 1 + Dp2 � 4096 � 642.
'e f3-continued fraction of

���
455

√
is

1
0+

3
64+

− 1
128+

− 1
128+

− 1
128+

· · · , (81)

which is purely periodic of length 1. If D � 23 and p � 5,
then 1 + Dp2 � 576 � 242. 'e F5 continued fraction of��
23

√
is

1
0+

5
24+

− 1
48+

− 1
48+

− 1
48+

· · · , (82)

which is again purely periodic of length 1. We know that
46 � 1 + 5 · 32 is not a complete square. 'e F3-continued
fraction of

�
5

√
is

1
0+

3
7+

− 1
3+

1
2+

1
3+

1
14+

− 1
3+

1
2+

1
3+

1
14+

· · · , (83)

which is purely periodic of length 4 not of length 1.
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5. Conclusion

'is article gives the complete solution set of the Pell
equation X2 − DY2 � 1 under the condition that Y is a
multiple of pl, where p is a prime and l is a natural number.
A solution to the Pell equation with the given restriction can
be obtained by theFpl-continued fraction expansion of

��
D

√

with maximum +1. Similar to the classical results, this so-
lution set also has a generating element which is nothing but
the solution (X, Y) with the smallest Y> 0. One direct
application to the obtained result is to determine whether for
a given prime p and a positive integer D, the number 1 +

Dp2 is a complete square? 'e answer is yes if the
Fp-continued fraction is periodic of length 1. We believe
that the results of this article will be interesting for the
readers. One can look for the solutions of the generalized
Pell equation with certain restrictions like in [16, 17] with the
help of Fpl-continued fractions.
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