Indian Institute of Information Technology Allahabad Linear Algebra (LAL) C3 Review Test

Program: B.Tech. 1st Semester (IT+ECE) Duration: **75+15 Minutes** Date: March 31, 2022

Full Marks: 50 Time:: 3:00 PM - 4:30 PM

Important Instructions:

- 1. Attempt all the questions. There is no credit for a solution if the appropriate work is not shown, even if the answer is correct. All the notations are standard and same as used in the lecture notes.
- 2. Write down your name and enrolment number. Write the solutions clearly with all the steps in details.
- 3. Submit the solution in PDF format through Google Classroom. Name the PDF as your LAL_C3_enrolment number. We will not accept the solution through emails.
- 1. Determine whether the following statements are true or false. In either case, give a proper justification (proof or counter example). Do all the parts of this question together, if you wish to do some part later, leave the space for the same. [2*8=16]
 - (a) An elementary row operation preserves the rank of a matrix.
 Solution: True: Note that a row obtained by applying an elementary row operation is nothing but a linear combination of rows of the matrix, thus an elementary row operation does not change the (row) rank of the matrix. [2]
 - (b) Suppose $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map such that T(1,0) = (1,4) and T(1,1) = (2,5). Then T is one-one. **Solution: True:** The set $\{(1,4), (2,5)\} \subset \text{Range}(T)$ is linearly independent. [1] Then Rank(T) = 2. Now, by the Rank-Nullity Theorem, we have Nullity(T) = 0. That is, T is one-one. [1]
 - (c) Let V be a vector space of all $n \times n$ real matrices. Let $T : V \to V$ be a linear map defined by T(X) = AX XA, for a fix $A \in V$. Then T is invertible. Solution: False:

Take $X = I_n$, the identity matrix. Then T(X) = 0 but $X = I_n \neq 0$. [1] That is, T is not one-one, hence, T is not invertible. [1]

(d) If
$$A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$$
 is similar to $D = \begin{bmatrix} d & 0 \\ 0 & e \end{bmatrix}$ where $a, b, c, d, e \in \mathbb{R}$. Then $b = 0$.

Solution: False:

Take
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
. [1]

Since A has distinct eigenvalues, A is diagonalizable. That is, A is similar to a diagonal matrix $D = \begin{bmatrix} d & 0 \\ 0 & e \end{bmatrix}$ for some $d, e \in \mathbb{R}$. [1]

(e) Let $V = \{A \in M_2(\mathbb{R}) : \text{trace}(A) = 0\}$. Then the vector spaces V and \mathbb{R}^4 are isomorphic over \mathbb{R} .

Solution: False:

The set $B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$ forms a basis of V. Then dim(V) = 3. [1]

It is well-known that $\dim(\mathbb{R}^4) = 4$. Recall that if two finite-dimensional vector spaces V_1 and V_2 are isomorphic then $\dim(V_1) = \dim(V_2)$. Therefore, V and \mathbb{R}^4 cannot be isomorphic. [1]

(f) Let T be a linear operator on an inner product space V such that $\langle T(x), T(x) \rangle = \langle x, x \rangle$ for all $x \in V$. Then T is one-one.

Solution: True:

Let $x, y \in V$. Since T is a linear operator, we have

$$\langle T(x) - T(y), T(x) - T(y) \rangle = \langle T(x-y), T(x-y) \rangle = \langle x-y, x-y \rangle = ||x-y||^2.$$
[1]

Suppose T(x) = T(y). Then, from the above, we obtain ||x - y|| = 0. That is, x = y. Therefore, T is one-one. [1]

(g) If A is a 3×3 complex matrix such that $A^3 + A = 0$, then trace(A) = 0. Solution:True:

Recall the properties of eigenvalues mentioned in Lecture-14 that: trace $(A) = \frac{a_1}{a_0}$, where the characteristic polynomial of A is $f(\lambda) = |\lambda I - A| = a_0 \lambda^n + a_1 \lambda^{n-1} + \cdots + a_n$. In view of the characteristic polynomial $A^3 + A = 0$ implies that a = 0. Therefore

In view of the above, the condition $A^3 + A = 0$ implies that $a_1 = 0$. Therefore, trace(A) = 0. [1]

- (h) Let $A \in M_n(\mathbb{R})$. Then AA^T is positive semi-definite. **Solution: True:** The matrix AA^T is symmetric: $(AA^T)^T = (A^T)^T A^T = AA^T$. [1] Now, the result follows from: $X^T A A^T X = (A^T X)^T (A^T X) = ||A^T X||^2 \ge 0$. [1]
- 2. Let $V = P_5(\mathbb{R}), W_1 = \{p(x) \in V \mid x^4 p(\frac{1}{x}) = p(x)\}$ and $W_2 = \{p(x) \in V \mid p(-x) = p(x)\}$. Find the dimensions of W_1, W_2 and $W_1 \cap W_2$. [5] Solution: Let $P_5 = \{p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5\}$. Then $p(x) = x^4 p(\frac{1}{x}) \Rightarrow a_0 = a_4, a_1 = a_3, a_5 = 0$. [1] Therefore $W_1 = \{p(x) = a_0(1 + x^4) + a_1(x + x^3) + a_2x^2\}$. $\therefore W_1 = span(S)$, where $S = \{x^2, x + x^3, 1 + x^4\}$ which is LI, $dim(W_1) = 3$. [1]

Similarly $p(-x) = p(x) \Rightarrow a_1 = 0, a_3 = 0, a_5 = 0.$ Therefore $W_2 = \{p(x) = a_0 + a_2x^2 + a_4x^4\}$. Thus $dim(W_2) = 3.$ [1] $x^4p(\frac{1}{x}) = p(x)$ and p(-x) = p(x) together implies $a_1 = a_3 = a_5 = 0$ and $a_0 = a_4.$ [1] Thus $W_1 \cap W_2 = \{p(x) = a_0 + a_2x^2 + a_0x^4\}$. Thus $dim(W_1 \cap W_2) = 2.$ [1]

[10]

[1]

- 3. Determine the following for the matrix A.
 - (a) Find the eigenvalues.
 - (b) Find the bases of corresponding eigenspaces.
 - (c) Find the characteristic and minimal polynomials.
 - (d) Is the matrix diagonalizable? Justify your answer.

$$A = \begin{bmatrix} 1001 & 3 & 5 & 7 & \cdots & 2n-1 \\ 1 & 1003 & 5 & 7 & \cdots & 2n-1 \\ 1 & 3 & 1005 & 7 & \cdots & 2n-1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 3 & 5 & 7 & \cdots & 1000 + (2n-1) \end{bmatrix}$$

Solution: Let B = A - 1000I, that is, A = B + 1000I. Then

$$B = \begin{bmatrix} 1 & 3 & 5 & \dots & 2n-1 \\ 1 & 3 & 5 & \dots & 2n-1 \\ 1 & 3 & 5 & \dots & 2n-1 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 3 & 5 & \dots & 2n-1 \end{bmatrix}$$

 \therefore rank(B) = 1 < n, B has an eigenvalue $\lambda_{1(B)} = 0$ and using trace, the remaining eigenvalue of B is $\lambda_{2(B)} = n^2$. [1/2+1/2]

Result: if λ is an eigenvalue of a matrix M and g(x) is any polynomial, then $g(\lambda)$ is an eigenvalue of g(M).

Here consider g(x) = x + 1000, the eigenvalues of A are:

$$\lambda_{1(A)} = \lambda_{1(B)} + 1000 = 1000 \text{ and } \lambda_{2(A)} = \lambda_{2(B)} + 1000 = n^2 + 1000.$$
 [1+1]

Result: if v is an eigenvector of a matrix M corresponding to eigenvalue λ , then v is also eigenvector of $M \pm \mu I$ for μ in the filed.

:. The eigenspace corresponding to $\lambda_{1(A)} = 1000$ is the eigenspace corresponding to $\lambda_{1(B)}$, which is given by:

$$E_{\lambda_{1(B)}=0}(=E_{\lambda_{1(A)}=1000}) = \{\bar{X} = (x_1, x_2, \dots, x_n) : B\bar{X} = \bar{0}\}$$

= $\{\bar{X} : x_1 + 3x_2 + 5x_3 + \dots + (2n+1)x_n = 0\}$
= $\{\bar{X} = (-3x_2 - 5x_3 - \dots - (2n+1)x_n, x_2, x_3, \dots, x_n)\}$
= $\{\bar{X} = x_2v_1 + x_3v_2 + x_4v_3 + \dots + x_nv_{n-1}\}.$

Where $S = \{v_1 = (-3, 1, 0, 0, \dots, 0), v_2 = (-5, 0, 1, 0, \dots, 1), v_3 = (-7, 0, 0, 1, \dots, 0), \dots, v_{n-1} = (-(2n+1), 0, 0, 0, \dots, 1)\}.$ [2] $\therefore E_{\lambda_{1A}} = \operatorname{span}(S_1).$ $\therefore S_1$ is linearly independent, S_1 is a basis of $E_{\lambda_{1(A)}=1000}.$

 $E_{\lambda_{2(B)}=n^{2}}(=E_{\lambda_{2(A)}=1000+n^{2}}) = \{\bar{X} = (x_{1}, x_{2}, \dots, x_{n}) : (B - n^{2}I)\bar{X} = \bar{0}\}.$ Solving the system $(B - n^{2}I)\bar{X} = \bar{0}$, we get:

$$(1 - n^{2})x_{1} + 3x_{2} + 5x_{3} + \dots + (2n + 1)x_{n} = 0$$

$$x_{1} + (3 - n^{2})x_{2} + 5x_{3} + \dots + (2n + 1)x_{n} = 0$$

$$x_{1} + 3x_{2} + 5x_{3} + \dots + (2n + 1)x_{n} = 0$$

$$\dots$$

$$x_{1} + 3x_{2} + 5x_{3} + \dots + ((2n + 1) - n^{2})x_{n} = 0$$

Then $\bar{X} = k(1, 1, \dots, 1)$.

Thus
$$E_{\lambda_{2(A)}=1000+n^2} = \operatorname{span}(S_2)$$
, where $S_2 = \{(1, 1, \dots, 1)\}.$ [1]

Since S_2 is linearly independent, S_2 is a basis of $E_{\lambda_{2(A)}=1000+n^2}$.

The characteristic polynomial of A is $(x - 1000)^{n-1}(x - (n^2 + 1000))$. [1]

Since AM = GM, the matrix is diagonalizable and [1]

the minimal polynomial of A is therefore $(x - 1000)(x - (n^2 + 1000))$. [1]

4. Let V be an inner product space over \mathbb{R} . Let $\{v_1, v_2, \ldots, v_n\}$ be a basis of V such that, whenever $v = \sum a_i v_i$, then $||v||^2 = \sum a_i^2$. Show that $\{v_1, v_2, \ldots, v_n\}$ is an orthonormal basis of V. [4]

Solution: By hypothesis, $||v_i||^2 = 1$.

For
$$i \neq j$$
, $||v_i + v_j||^2 = 2$. [1]

[1]

$$\Rightarrow \langle v_i + v_j, v_i + v_j \rangle = 2$$

$$\Rightarrow \langle v_i, v_i \rangle + \langle v_i, v_j \rangle + \langle v_j, v_i \rangle + \langle v_j, v_j \rangle = 2$$
^[1]

$$\Rightarrow \|v_i\|^2 + 2\langle v_i, v_j \rangle + \|v_j\|^2 = 2$$

$$\Rightarrow \langle v_i, v_j \rangle = 0.$$

Hence $\{v_1, v_2, \ldots, v_n\}$ is an orthonormal basis of V

5. Let $A \in M_{m \times n}(\mathbb{R})$ with rank r. Suppose $A = U\Sigma V^T$ is an SVD of A. Define $A^{\dagger} = V\Sigma^{\dagger}U^T$, where $\Sigma^{\dagger} \in M_{n \times m}(\mathbb{R})$ is given by

$$\Sigma_{ij}^{\dagger} = \begin{cases} 1/\Sigma_{ii} & i = j, \text{ and } \Sigma_{ii} \neq 0\\ 0 & \text{otherwise.} \end{cases}$$

Then show that

- (a) ||Uy|| = ||y|| for all $y \in \mathbb{R}^m$. [2]
- (b) $||Ax b||^2 = ||\Sigma V^T x U^T b||^2$ for $b \in \mathbb{R}^m$ and $x \in \mathbb{R}^n$. [2]

(c)
$$\|\Sigma z - y\|^2 = \sum_{i=1}^r (\Sigma_{ii} z_i - y_i)^2 + \sum_{i=r+1}^m y_i^2$$
 for $y \in \mathbb{R}^m$ and $z \in \mathbb{R}^n$. [2]

(d) $\|(\Sigma\Sigma^{\dagger} - I_m)y\|^2 = \sum_{i=r+1}^m y_i^2$ for $y \in \mathbb{R}^m$. [4]

(e)
$$||AA^{\dagger}b - b||^2 = \sum_{i=r+1}^m (U^T b)_i^2.$$
 [3]

(f) $A^{\dagger}b$ is a least square solution of an inconsistent system AX = b.

Solution: (a) Note that $\langle x, x \rangle = x^t x$ for all $x \in \mathbb{R}^n$ and U is orthogonal so that $U^T U = I_n$. [1]

$$||Uy||^{2} = \langle Uy, Uy \rangle = (Uy)^{T} (Uy) = y^{t} U^{T} Uy = y^{T} y = ||y||^{2}.$$
(b)
(1)

$$||Ax - b||^{2} = ||U\Sigma V^{T}x - b||^{2}$$

= $||U^{T}(U\Sigma V^{T}x - b)||^{2}$ using part(a) [1]

$$= \|\Sigma V^T x - U^T b\|^2 \quad (\text{ since } U^T U = I_m)$$
^[1]

[2]

(c) For any
$$x \in \mathbb{R}^m$$
, $||x||^2 = \sum_{i=1}^m x_i^2$ and for any matrix $C \in M_m(\mathbb{R})$ and $y \in \mathbb{R}^m$,
 $(Cy)_i = \sum_{j=1}^m C_{ij}y_j$ for $1 \le i \le m$. [1]
 $||\Sigma z - y||^2 = \sum_{i=1}^m (\sum_{j=1}^n \Sigma_{ij}z_j - y_i)^2 = \sum_{i=1}^r (\Sigma_{ii}z_i - y_i)^2 + \sum_{i=r+1}^m y_i^2$. (since Σ is a rectangular diagonal matrix of rank r) [1]
(d)Put $z = \Sigma^{\dagger}y$ in part (c). [1]
 $||(\Sigma\Sigma^{\dagger} - I_m)y||^2 = \sum_{i=1}^r (\Sigma_{ii}(\Sigma^{\dagger}y)_i - y_i)^2 + \sum_{i=r+1}^m y_i^2 = \sum_{i=1}^r (\Sigma_{ii}\Sigma_{ii}^{\dagger} - 1)^2 y_i^2 + \sum_{i=r+1}^m y_i^2$.
(since Σ and Σ^{\dagger} are rectangular diagonal matrices) [1]
 $\Sigma_{ii}\Sigma_{ii}^{\dagger} = 1$ for $i \le r$, and 0 otherwise . [1]
 $||(\Sigma\Sigma^{\dagger} - I_m)y||^2 = \sum_{i=r+1}^m y_i^2$ [1]
(e)

$$\|AA^{\dagger}b - b\|^{2} = \|(U\Sigma V^{T})(V\Sigma^{\dagger}U^{T})b - b\|^{2}$$

$$= \|(U\Sigma\Sigma^{\dagger}U^{T})b - b\|^{2} \quad (\text{ since } V^{T}V = I_{n}) \qquad [1]$$

$$= \|(\sum \Sigma^{\dagger} - I_m) U^T b\|^2 \quad \text{using part}(a)$$
[1]

$$= \sum_{i=r+1}^{m} (U^T b)_i^2 \quad (\text{ using part } (d)$$
 [1]

(f) $A^{\dagger}b$ is a least square if and only if $||AA^{\dagger}b - b||^2 \le ||Ax - b||^2$ for all $x \in \mathbb{R}^m$. By part (b) and (c), $||Ax - b||^2 = c + \sum_{i=r+1}^m (U^T b)_i^2$, where $c \ge 0$. [1] Now by (e), $||AA^{\dagger}b - b||^2 \le ||Ax - b||^2$. [1]