Lecture 9

Basis \& Dimension of Direct Sum of Subspaces

Theorem 1. If W is a subspace of a finite dimensional vector space V, every linearly independent subset of W is finite and it is a part of a basis for W.

We say that W is a proper subspace of a vector space V if $W \neq\{0\}$ and $W \neq V$.

Theorem 2. If W is a proper subspace of a finite-dimensional vector space V, then W is finitedimensional and $\operatorname{dim} W<\operatorname{dim} V$.

Proof: Since W is not the zero space, then $\exists w \in W$ such that $w \neq 0$. There is a basis B of W containing w. Note that B can have at most n vectors as V is n dimensional. Hence W is finitedimensional, and $\operatorname{dim} W \leq \operatorname{dim} V$. Since W is a proper subspace, there is a vector v in V which is not in W. Adjoining v to B, we obtain a linearly independent subset of V. Thus $\operatorname{dim} W<\operatorname{dim} V$.

Theorem 3. If W_{1} and W_{2} are two subspaces of a finite dimensional vector space V, then $W_{1}+W_{2}$ is finite dimensional and $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$.

Proof: Since $W_{1} \cap W_{2}$ is a subspace of W_{1} as well as of W_{2}, it is finite dimensional. If $B_{0}=$ $\left\{w_{1}, \ldots, w_{k}\right\}$ is a basis of $W_{1} \cap W_{2}$, then B_{0} can be extended to a basis for W_{1} as well as of W_{2}. Let $B_{1}=\left\{w_{1}, \ldots, w_{k}, v_{1}, \ldots, v_{l}\right\}$ and $B_{2}=\left\{w_{1}, \ldots, w_{k}, u_{1}, \ldots, u_{m}\right\}$ be bases of W_{1} and W_{2} respectively. We claim that the set $B=B_{0} \cup B_{1} \cup B_{2}=\left\{w_{1}, \ldots, w_{k}, v_{1}, \ldots, v_{l}, u_{1}, \ldots, u_{m}\right\}$ forms a basis of the subspace $W_{1}+W_{2}$. Clearly, $L(B)=W_{1}+W_{2}$. We need to show that B is a linearly independent set. Let $\sum_{i=1}^{k} \alpha_{i} w_{i}+\sum_{j=1}^{l} \beta_{j} v_{j}+\sum_{r=1}^{m} \gamma_{r} u_{r}=0$, where $\alpha_{i}, \beta_{i}, \gamma_{i} \in \mathbb{F}$. Then

$$
\sum_{i=1}^{k} \alpha_{i} w_{i}+\sum_{j=1}^{l} \beta_{j} v_{j}=-\sum_{r=1}^{m} \gamma_{r} u_{r}
$$

so that $-\sum_{k=1}^{m} \gamma_{k} u_{k}=W_{1} \cap W_{2}$ (as RHS is in W_{2} and LHS is in W_{1}). Therefore,

$$
-\sum_{r=1}^{m} \gamma_{r} u_{r}=\sum_{i=1}^{k} \delta_{i} w_{i}
$$

so that $\sum_{r=1}^{m} \gamma_{r} u_{r}+\sum_{i=1}^{k} \delta_{i} w_{i}=0$. But $\left\{w_{1}, \ldots, w_{k}, u_{1}, \ldots, u_{m}\right\}$ is a basis of W_{2}, therefore $\gamma_{r}=0$ for $1 \leq r \leq m$. This further implies that $\alpha_{i}=\beta_{j}=0$. Thus, the set B forms a basis for $W_{1}+W_{2}$.

Corollary 4. Let W_{1}, W_{2} be subspaces of V. Then

$$
\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim} V \leq \operatorname{dim}\left(W_{1} \cap W_{2}\right) \leq \min \left\{\operatorname{dim} W_{1}, \operatorname{dim} W_{2}\right\}
$$

Definition 5. Let W_{1} and W_{2} be subspaces of a vector space V. The vector space V is called the direct sum of W_{1} and W_{2}, denoted as $W_{1} \oplus W_{2}$, if every element $v \in V$ can be uniquely represented as $v=w_{1}+w_{2}$, where $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$.

Theorem 6. A vector space $V(\mathbb{F})$ is the direct sum of its subspaces W_{1} and W_{2} if and only if $V=W_{1}+W_{2}$, and $W_{1} \cap W_{2}=\{0\}$.

Proof: Let $V=W_{1} \oplus W_{2}$. Since every elements $v \in V, v=w_{1}+w_{2}$, where $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$. Thus, $W_{1}+W_{2}=V$. Let $x \in W_{1} \cap W_{2}$. Then $x=x+0$ and $x=0+x$. But x must have a unique representation, therefore $x=0$.

Conversely, let $V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=\{0\}$. Suppose $v \in V$ has more than one representation, i.e., $v=w_{1}+w_{2}=w_{1}^{\prime}+w_{2}^{\prime}$. This implies $w_{1}-w_{1}^{\prime}=w_{2}-w_{2}^{\prime} \in W_{1} \cap W_{2}=\{0\}$. Thus $w_{1}=w_{1}^{\prime}$ and $w_{2}=w_{2}^{\prime}$. This follows the proof.

Corollary 7. $\operatorname{dim}\left(W_{1} \oplus W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}$.

Example 8. Let $V=\mathbb{R}^{2}(\mathbb{R})$ and $W_{1}=\{(x, 2 x) \mid x \in \mathbb{R}\}$, $W_{2}=\{(x, 3 x) \mid x \in \mathbb{R}\}$ be subspaces of V. Then $V=W_{1} \oplus W_{2}$.

Note that, $(x, y)=(3 x-y, 2(3 x-y))+(y-2 x, 3(y-2 x))$. Let $(x, y) \in W_{1} \cap W_{2}$ then $(x, y)=(a, 2 a)=$ $(b, 3 b)$ for some $a, b \in \mathbb{R}$. Then $(x, y)=(0,0)$ so that $W_{1} \cap W_{2}=\{0\}$.

