## Lecture 8

## Basis \& Dimension

Definition 1. Let $V$ be a vector space over a field $\mathbb{F}$. A subset $S$ of $V$ is said to be a basis of $V$ if the following conditions are satisfied.

1. $S$ is linearly independent set.
2. The linear span $L(S)$ is the vector space $V$, that is, $L(S)=V$.

Example 2. 1. Let $V=\mathbb{F}^{n}(\mathbb{F})$ and $B=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$, where $e_{i}=(0,0, \ldots, 1, \ldots, 0)$, (1 at the $i$-th component and 0 otherwise). The set $B$ is a basis of $\mathbb{F}^{n}$ and is called the standard basis of $\mathbb{F}^{n}(\mathbb{F})$.
2. The set $B=\left\{e_{i j} \in M_{m \times n} \mid i, j\right.$-th entry of $e_{i j}$ is 1 and 0 otherwise $\}$ is the standard basis of $M_{m \times n}(\mathbb{F})$ over $\mathbb{F}$.
3. The set $B=\left\{1, x, x^{2}, x^{3}, \ldots, x^{n}\right\}$ is the standard basis of $P_{n}(\mathbb{R})$ over $\mathbb{R}$.
4. The set $B=\left\{1, x, x^{2}, x^{3} \ldots\right\}$ is the standard basis of $\mathbb{R}[x]$ over $\mathbb{R}$.

Remark 3. 1. Every vector space has a basis.
2. The basis of the zero space is the empty set $\emptyset$.
3. A basis of a vector space need not be unique, for instance, $\{(1,1),(1,-1)\}$ is also a basis of $\mathbb{R}^{2}(\mathbb{R})$. 4. A vector space $V$ is called a finite dimensional vector space if it has a finite basis, otherwise it is called an infinite dimensional space.

Theorem 4. Let $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis of a vector space $V$ over $\mathbb{F}$. If $B^{\prime}=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$, where $(m>n)$. Then $B^{\prime}$ is a linearly dependent set.

Proof: We will show that there exist scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \mathbb{F}$, not all of which are 0 , such that $\alpha_{1} w_{1}+\alpha_{2} w_{2}+\ldots+\alpha_{m} w_{m}=0$. Since $B$ is a basis of $V$, we can write an element of $B^{\prime}$ as linear combination of elements of $B$ over $\mathbb{F}$ so that

$$
\begin{aligned}
& w_{1}=a_{11} v_{1}+a_{12} v_{2}+\ldots+a_{1 n} v_{n} \\
& w_{2}=a_{21} v_{1}+a_{22} v_{2}+\ldots+a_{2 n} v_{n} \\
& \quad \vdots \\
& w_{m}=a_{m 1} v_{1}+a_{m 2} v_{2}+\ldots+a_{m n} v_{n}
\end{aligned}
$$

Therefore, $\alpha_{1}\left(a_{11} v_{1}+a_{12} v_{2}+\ldots+a_{1 n} v_{n}\right)+\alpha_{2}\left(a_{21} v_{1}+a_{22} v_{2}+\ldots+a_{2 n} v_{n}\right)+\cdots+\alpha_{m}\left(a_{m 1} v_{1}+a_{m 2} v_{2}+\right.$ $\left.\cdots+a_{m n} v_{n}\right)=0$. Equivalently,
$\left(\alpha_{1} a_{11}+\alpha_{2} a_{21}+\ldots+\alpha_{m} a_{m 1}\right) v_{1}+\left(\alpha_{1} a_{12}+\alpha_{2} a_{22}+\ldots+\alpha_{m} a_{m 2}\right) v_{2}+\ldots+\left(\alpha_{1} a_{1 n}+\alpha_{2} a_{2 n}+\ldots+\alpha_{m} a_{m n}\right) v_{n}=0$. Since $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of $V$, we get

$$
\begin{aligned}
\alpha_{1} a_{11}+\alpha_{2} a_{21}+\ldots+\alpha_{m} a_{m 1} & =0 \\
\alpha_{1} a_{12}+\alpha_{2} a_{22}+\ldots+\alpha_{m} a_{m 2} & =0 \\
\vdots & \\
\alpha_{1} a_{1 n}+\alpha_{2} a_{2 n}+\ldots+\alpha_{m} a_{m n} & =0
\end{aligned}
$$

Above is a homogeneous system of $n$ equations in $m$ unknowns with $m>n$, therefore the system has a non-zero solution. Thus, $\alpha_{i} \neq 0$ for some $i$ so that $B^{\prime}$ is linearly dependent.

Corollary 5. Let $V(\mathbb{F})$ be a finite dimensional vector space. The any two bases of $V$ have the same number of elements.

Definition 6. Let $V(\mathbb{F})$ be a finite dimensional vector space. Then the number of elements in a basis of $V$ is called dimension of $V$ and it is denoted as $\operatorname{dim}(V)$.

Example 7. 1. $\operatorname{dim}\left(\mathbb{F}^{n}(\mathbb{F})\right)=n$; 2. $\operatorname{dim}(\mathbb{C}(\mathbb{R}))=2$; 3. $\operatorname{dim}\left(M_{m \times n}(\mathbb{F})\right)=m n ;$ 4. $\operatorname{dim} P_{n}(\mathbb{R})=n+1 ; 5$. $\mathbb{R}[x]$ is an infinite dimensional space.

Remark 8. Let $V$ be a finite-dimensional vector space and let $n=\operatorname{dim} V$. Then

1. any subset of $V$ which contains more than $n$ vectors is linearly dependent;
2. no subset of $V$ which contains fewer than $n$ vectors can span $V$.

Theorem 9. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for a vector space $V$. Then each vector in $V$ can be expressed uniquely as a linear combination of the basis vectors.

Proof: Let $v \in V$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \beta_{1}, \beta_{2}, \ldots, \beta_{n} \in \mathbb{F}$ such that $v=\sum_{i=1}^{n} \alpha_{i} v_{i}=\sum_{i=1}^{n} \beta_{i} v_{i}$. Then $\sum_{i=1}^{n}\left(\alpha_{i}-\beta_{i}\right) v_{i}=0$, but $v_{i}^{\prime}$ s are linearly independent so that $\alpha_{i}-\beta_{i}=0$ for each $i$. Therefore, each vector in $V$ can be expressed uniquely as a linear combination of the basis vectors.

Theorem 10. Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ be a linearly independent subset of a vector space $V$. If $v \notin L(S)$, then $S \cup\{v\}$ is linearly independent.

Proof: Consider the set $S^{\prime}=S \cup\{v\}$. Let $\alpha v+\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}=0$. It is enough to show that $\alpha=0$. If $\alpha \neq 0$, then $v \in L(S)$, which is not true. Hence, $\alpha=0$ so that $S^{\prime}$ is L.I.

Theorem 11. Let $V$ be an $n$ dimensional vector space. Then

1. a linearly independent set of $n$ vectors of $V$ is a basis of $V$;
2. a set of $n$ vectors of $V$ which spans $V$ is a basis of $V$.

Proof: Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset V$ be a linearly independent set. It is enough to show that $L(S)=V$. Suppose it is not true and $v \in V \backslash S$. Then the set $S \cup\{v\}$ is L.I. which contradicts the fact that $\operatorname{dim} V=n$. Thus $v \in L(S)$. Therefore $S$ is a basis of $V$.

Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset V$ and $L(S)=V$. Suppose $S$ is linearly dependent. Then there exist $i$ such that $v_{i}$ a is linear combination of rest of the vectors in $S$. Therefore, the set $S \backslash\left\{v_{i}\right\}$ spans $V$ having $n-1$ vectors so that $\operatorname{dim} V \leq n-1$ which contradicts the fact that $\operatorname{dim} V=n$.

Example 12. Find a basis and dimension of the solution space of the homogeneous system $A x=0$, where $A=\left(\begin{array}{ccc}1 & 3 & 1 \\ 1 & 1 & -1 \\ 3 & 11 & 5\end{array}\right)$.

Solution: The $R R E$ form of $A$ is $\left(\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right)$. The solution set is $\{(2 z,-z, z) \mid z \in \mathbb{R}\}$. Any solution is a linear combination of $(2,-1,1)$ and a singleton set with a non-zero element is linearly independent. Thus $\{(2,-1,1)\}$ is a basis of the solution space of $A x=0$. Hence, the dimension of the solution space is 1 .

