Lecture 7

Linear Combination, Linear Span, Linear Dependence & Independence

Definition 1. Let V be a vector space over a field \mathbb{F} . A vector $v \in V$ is said to be a linear combination of the vectors $v_1, v_2, \ldots, v_k \in V$ if there exist scalars $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{F}$ such that

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_k v_k.$$

Example 2. 1. Consider the vector space \mathbb{R}^2 over \mathbb{R} . Let $v_1 = (1,0), v_2(0,1) \in \mathbb{R}^2$. and $(x,y) \in \mathbb{R}^2$. Then every vector (x,y) in \mathbb{R}^2 is a linear combination of v_1 and v_2 as (x,y) = x(1,0) + y(0,1).

2. Let $\mathbb{R}^3(\mathbb{R})$ and (1,1,1), $(1,1,-1) \in \mathbb{R}^3$. Then (1,1,2) is a linear combination of (1,1,1) and (1,1,-1) as $(1,1,2) = \frac{-1}{2}(1,1,1) + \frac{3}{2}(1,1,-1)$. But (1,-1,0) is not a linear combination of (1,1,1) and (1,1,-1). (Verify yourself!)

Definition 3. Let V be a vector space over the field \mathbb{F} and $S \subseteq V$. Then a vector $v \in V$ is said to be a linear combination of vectors in S if there exist a positive integer k and scalars $\alpha_1, \alpha_2, \ldots, \alpha_k$ in \mathbb{F} such that $v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_k v_k$, where $v_i \in S$.

Example 4. Consider the vector space $P(\mathbb{R})$ over \mathbb{R} . Let $S = \{1, x, x^2, x^3, ...\}$. Then every polynomial in $P(\mathbb{R})$ is a linear combination of vectors in S.

Definition 5. Let V be a vector space over \mathbb{F} and $S \subseteq V$. Then **linear span of** S, denoted as L(S) or [S], is a subset of V defined as $L(S) = \{\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_k v_k | v_i \in S, \alpha_i \in \mathbb{F}\}$. For instance, $L(\{(1,0), (0,1)\}) = \mathbb{R}^2$ and $L(\{(1,1,1), (1,1,-1)\}) = \{((a,a,b)) | a, b \in \mathbb{R}\}.$

Theorem 6. Let S be a non empty subset of a vector space V over \mathbb{F} . Then L(S) is the smallest subspace containing S.

Proof: Let $v \in S$. Then $1.v \in L(S)$ so that S is contained in L(S). Next, we show that L(S) is a subspace of V. Let $v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_k v_k$ and $v' = \beta_1 v'_1 + \beta_2 v'_2 + \ldots + \beta_l v'_l$ belong to L(S). Then for any scalars $\gamma, \delta, \gamma v + \delta v' = \gamma \alpha_1 v_1 + \gamma \alpha_2 v_2 + \ldots + \gamma \alpha_k v_k + \delta \beta_1 v'_1 + \delta \beta_2 v'_2 + \ldots + \delta \beta_l v'_l \in L(S)$. Thus L(S) is a subspace of V.

Now to show that L(S) is the smallest subspace containing S, it is enough to show that L(S) is a subset of any subspace containing S. Let T be a subspace of V which contains S and $v \in L(S)$. Then $v = \sum_{i=1}^{k} \alpha_i v_i$ for $\alpha_i \in \mathbb{F}$ and $v_i \in S$. Note that $v_i \in S$ implies $v_i \in T$, and hence $v \in T$ as T is a subspace.

Definition 7. Let S be a set of vectors in a vector space V over \mathbb{F} . The subspace spanned by S, denoted as $\langle S \rangle$, is defined to be the intersection of all subspaces of V which contain S.

Theorem 8. $L(S) = \langle S \rangle$.

Definition 9. The sum $S_1 + S_2$ of two subsets S_1, S_2 of a vector space V over \mathbb{F} is given by

$$S_1 + S_2 = \{ v_1 + v_2 \mid v_1 \in S_1, v_2 \in S_2 \}.$$

Theorem 10. Let V be a vector space over \mathbb{F} and U and W be two subspaces of V. Then

- 1. U + W is a subspace of V;
- 2. $U + W = L(U \cup W)$.

Proof: Let $v, v' \in U + W$. The v = u + w and v' = u' + w' for some $u, u' \in U$ and $w, w' \in W$. Let $\alpha, \beta \in \mathbb{F}$. Then $\alpha v + \beta v' = (\alpha u + \beta u') + (\alpha w + \beta w') \in U + W$. Therefore, U + W is a subspace of V.

Note that U + W is a subspace of V containing $U \cup W$. Hence, $L(U \cup W) \subseteq U + W$. Now suppose $v \in U + W$. Then v = u + w, where $u \in U$ and $w \in W$. Note that $u, w \in U \cup W$ and hence, $u + w \in L(U \cup W)$. Therefore, $U + W \subseteq L(U \cup W)$.

Definition 11. Let V be a vector space over \mathbb{F} . A subset S of V is said to be **linearly dependent** (LD) if there exist distinct vectors $v_1, v_2, \ldots, v_n \in S$, and scalars $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{F}$, not all of which are 0, such that $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n = 0$.

A set which is not linearly dependent is called **linearly independent**.

Let $S = \{v_1, v_2, \ldots, v_k\}$. Then v_1, v_2, \ldots, v_k are said to be linearly dependent if there exist scalars $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{F}$, not all of which are 0, such that $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k = 0$.

The vectors v_1, v_2, \ldots, v_k are not linearly dependent, that is, linearly independent if $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k = 0$ implies $\alpha_i = 0$ for all $i = 1, 2, \ldots, k$.

Example 12. 1. Consider the vector space \mathbb{R}^3 over \mathbb{R} . The set $S = \{(n, n, n) \mid n \in \mathbb{N}\}$ is linearly dependent since $(2, 2, 2), (3, 3, 3) \in and \ 3(2, 2, 2) - 2(3, 3, 3) = 0$ so that S is linearly dependent.

2. The $S = \{(1,2,3), (2,3,4), (1,1,2)\}$ is linearly independent in $\mathbb{R}^3(\mathbb{R})$. To see this consider $\alpha_1(1,2,3) + \alpha_2(2,3,4) + \alpha_3(1,1,2) = 0$. Then $(\alpha_1 + 2\alpha_2 + \alpha_3, 2\alpha_1 + 3\alpha_2 + \alpha_3, 3\alpha_1 + 4\alpha_2 + 2\alpha_3) = (0,0,0)$. Thus, $\alpha_1 + 2\alpha_2 + \alpha_3 = 0, 2\alpha_1 + 3\alpha_2 + \alpha_3 = 0, 3\alpha_1 + 4\alpha_2 + 2\alpha_3 = 0$. By solving this system of linear equations, we see that $\alpha_1 = 0, \alpha_2 = 0, \alpha_3 = 0$ is the only possible solution.

3. Observe that 1.0 = 0. Thus, any subset of a vector space containing the zero vector is linearly dependent.

4. The set $\{(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)\} \subseteq \mathbb{R}^n$ is linearly independent.

5. Let $V = \{f \mid f : [-1,1] \to \mathbb{R}\}$. The set $\{x, |x|\}$ is linearly independent. To see this, consider the equation $\alpha x + \beta |x| = 0$. A function is zero if it is zero at every point of the domain. Thus, $\alpha x + \beta |x| = 0$

for all $x \in [-1,1]$. If x = 1 we get $\alpha + \beta = 0$ and if x = -1, $\alpha - \beta = 0$. Solving these two equations we get $\alpha = \beta = 0$. Thus the set is linearly independent.

Remark 13. Let V be a vector space over \mathbb{F} . Then

- 1. the set $\{v\}$ is L.D. if and only if v = 0;
- 2. a subset of a linearly independent set is also linearly independent;
- 3. a set containing a linearly dependent set is also linearly dependent.