
Lecture 7

Linear Combination, Linear Span, Linear Dependence & Independence

Definition 1. Let V be a vector space over a field F. A vector v ∈ V is said to be a linear combination

of the vectors v1, v2, . . . , vk ∈ V if there exist scalars α1, α2, . . . , αk ∈ F such that

v = α1v1 + α2v2 + . . .+ αkvk.

Example 2. 1. Consider the vector space R2 over R. Let v1 = (1, 0), v2(0, 1) ∈ R2. and (x, y) ∈ R2.

Then every vector (x, y) in R2 is a linear combination of v1 and v2 as (x, y) = x(1, 0) + y(0, 1).

2. Let R3(R) and (1, 1, 1), (1, 1,−1) ∈ R3. Then (1, 1, 2) is a linear combination of (1, 1, 1) and

(1, 1,−1) as (1, 1, 2) = −1
2

(1, 1, 1) + 3
2
(1, 1,−1). But (1,−1, 0) is not a linear combination of (1, 1, 1) and

(1, 1,−1). (Verify yourself !)

Definition 3. Let V be a vector space over the field F and S ⊆ V . Then a vector v ∈ V is said to be a

linear combination of vectors in S if there exist a positive integer k and scalars α1, α2, . . . , αk in F
such that v = α1v1 + α2v2 + . . .+ αkvk, where vi ∈ S.

Example 4. Consider the vector space P (R) over R. Let S = {1, x, x2, x3, . . . }. Then every polynomial

in P (R) is a linear combination of vectors in S.

Definition 5. Let V be a vector space over F and S ⊆ V . Then linear span of S, denoted as L(S)

or [S], is a subset of V defined as L(S) = {α1v1 + α2v2 + . . . + αkvk | vi ∈ S, αi ∈ F}. For instance,

L({(1, 0), (0, 1)}) = R2 and L({(1, 1, 1), (1, 1,−1)}) = {((a, a, b)) | a, b ∈ R}.

Theorem 6. Let S be a non empty subset of a vector space V over F. Then L(S) is the smallest subspace

containing S.

Proof: Let v ∈ S. Then 1.v ∈ L(S) so that S is contained in L(S). Next, we show that L(S) is a

subspace of V . Let v = α1v1 + α2v2 + . . .+ αkvk and v′ = β1v
′
1 + β2v

′
2 + . . .+ βlv

′
l belong to L(S). Then

for any scalars γ, δ, γv + δv′ = γα1v1 + γα2v2 + . . . + γαkvk + δβ1v
′
1 + δβ2v

′
2 + . . . + δβlv

′
l ∈ L(S). Thus

L(S) is a subspace of V .

Now to show that L(S) is the smallest subspace containing S, it is enough to show that L(S) is a

subset of any subspace containing S. Let T be a subspace of V which contains S and v ∈ L(S). Then

v =
∑k

i=1 αivi for αi ∈ F and vi ∈ S. Note that vi ∈ S implies vi ∈ T , and hence v ∈ T as T is a

subspace. �

Definition 7. Let S be a set of vectors in a vector space V over F. The subspace spanned by S,

denoted as 〈S〉, is defined to be the intersection of all subspaces of V which contain S.

Theorem 8. L(S) = 〈S〉.
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Definition 9. The sum S1 + S2 of two subsets S1, S2 of a vector space V over F is given by

S1 + S2 = {v1 + v2 | v1 ∈ S1, v2 ∈ S2}.

Theorem 10. Let V be a vector space over F and U and W be two subspaces of V . Then

1. U +W is a subspace of V ;

2. U +W = L(U ∪W ).

Proof: Let v, v′ ∈ U + W. The v = u + w andv′ = u′ + w′ for some u, u′ ∈ U and w,w′ ∈ W. Let

α, β ∈ F. Then αv + βv′ = (αu+ βu′) + (αw + βw′) ∈ U +W. Therefore, U +W is a subspace of V .

Note that U + W is a subspace of V containing U ∪W. Hence, L(U ∪W ) ⊆ U + W. Now suppose

v ∈ U + W. Then v = u + w, where u ∈ U and w ∈ W . Note that u,w ∈ U ∪ W and hence,

u+ w ∈ L(U ∪W ). Therefore, U +W ⊆ L(U ∪W ).

Definition 11. Let V be a vector space over F. A subset S of V is said to be linearly dependent

(LD) if there exist distinct vectors v1, v2, . . . , vn ∈ S, and scalars α1, α2, . . . , αn ∈ F, not all of which are

0, such that α1v1 + α2v2 + · · ·+ αnvn = 0.

A set which is not linearly dependent is called linearly independent.

Let S = {v1, v2, . . . , vk}. Then v1, v2, . . . , vk are said to be linearly dependent if there exist scalars

α1, α2, . . . , αk ∈ F, not all of which are 0, such that α1v1 + α2v2 + · · ·+ αkvk = 0.

The vectors v1, v2, . . . , vk are not linearly dependent, that is, linearly independent if α1v1 + α2v2 +

· · ·+ αkvk = 0 implies αi = 0 for all i = 1, 2, . . . , k.

Example 12. 1. Consider the vector space R3 over R. The set S = {(n, n, n) | n ∈ N} is linearly

dependent since (2, 2, 2), (3, 3, 3) ∈ and 3(2, 2, 2)− 2(3, 3, 3) = 0 so that S is linearly dependent.

2. The S = {(1, 2, 3), (2, 3, 4), (1, 1, 2)} is linearly independent in R3(R). To see this consider

α1(1, 2, 3) +α2(2, 3, 4) +α3(1, 1, 2) = 0. Then (α1 + 2α2 +α3, 2α1 + 3α2 +α3, 3α1 + 4α2 + 2α3) = (0, 0, 0).

Thus, α1 + 2α2 + α3 = 0, 2α1 + 3α2 + α3 = 0, 3α1 + 4α2 + 2α3 = 0. By solving this system of linear

equations, we see that α1 = 0, α2 = 0, α3 = 0 is the only possible solution.

3. Observe that 1.0 = 0. Thus, any subset of a vector space containing the zero vector is linearly

dependent.

4. The set {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} ⊆ Rn is linearly independent.

5. Let V = {f | f : [−1, 1] → R}. The set {x, |x|} is linearly independent. To see this, consider the

equation αx+ β|x| = 0. A function is zero if it is zero at every point of the domain.Thus, αx+ β|x| = 0
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for all x ∈ [−1, 1]. If x = 1 we get α + β = 0 and if x = −1, α− β = 0. Solving these two equations we

get α = β = 0. Thus the set is linearly independent.

Remark 13. Let V be a vector space over F. Then

1. the set {v} is L.D. if and only if v = 0;

2. a subset of a linearly independent set is also linearly independent;

3. a set containing a linearly dependent set is also linearly dependent.
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