Lecture 4
Invertible Matrix \& Gauss-Jordan Method

Definition 1. Invertible Matrix: A square matrix M is said to be invertible if there exists a matrix N of the same order such that $M N=N M=I$. The matrix N is called inverse of M and is denoted as M^{-1}.

Theorem 2. Let A and B be two $n \times n$ matrices then: (a) if A is invertible, then so is A^{-1} with $\left(A^{-1}\right)^{-1}=A ;(b)$ if both A and B are invertible, then so is $A B$ with $(A B)^{-1}=B^{-1} A^{-1}$.

Theorem 3. An elementary matrix is invertible.
Proof: Let E be an elementary matrix corresponding to the elementary row operation ρ. If ρ^{\prime} is the inverse operation of ρ and $E^{\prime}=\rho^{\prime}(I)$, then $E E^{\prime}=\rho(I) \rho^{\prime}(I)=\rho\left(\rho^{\prime}(I)\right)=\left(\rho \circ \rho^{\prime}\right)(I)=I$ and $E^{\prime} E=\rho^{\prime}(I) \rho(I)=\rho^{\prime}(\rho(I))=\left(\rho^{\prime} \circ \rho\right)(I)=I$ so that E is invertible.

Theorem 4. Let A be an $m \times n$ matrix. Then by applying a sequence of row and column operations A can be reduced to the form

$$
\left[\begin{array}{cc}
I_{r \times r} & 0_{r \times(n-r)} \\
0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}
\end{array}\right]_{m \times n}
$$

which is called the normal form of the matrix, equivalently, there exist elementary row matrices E_{1}, \ldots, E_{s}, and elementary column matrics F_{1}, \ldots, F_{k} such that

$$
E_{1} \cdots E_{s} A F_{1} \cdots F_{k}=\left[\begin{array}{cc}
I_{r \times r} & 0_{r \times(n-r)} \\
0_{(n-r) \times r} & 0_{(n-r) \times(n-r)}
\end{array}\right] .
$$

Theorem 5. Let A be an $n \times n$ matrix. Then A is invertible if and only if A is a product of elementary matrices.

Proof: If A is an invertible matrix then there exist elementary matrices $E_{1}, \ldots, E_{s}, F_{1}, \ldots, F_{k}$ such that

$$
E_{1} \cdots E_{s} A F_{1} \cdots F_{k}=\left[\begin{array}{cc}
I_{r \times r} & 0_{r \times(n-r)} \\
0_{(n-r) \times r} & 0_{(n-r) \times(n-r)}
\end{array}\right]=I_{n} .
$$

Therefore, $A=E_{s}^{-1} \ldots E_{1}^{-1} I_{n} F_{k}^{-1} \ldots F_{1}^{-1}$. Note that an elementary column matrix is one of the elementary row matrices. Further, inverse of an elementary matrix is again an elementary matrix. Hence, A is a product of elementary matrices. Converse follows from the fact that the product of invertible matrices is invertible.

Theorem 6. Let A be an $n \times n$ matrix. Then A is invertible if and only if A can be reduced to the identity matrix I_{n} by performing a finite sequence of elementary row operations on A.

Proof: If A is invertible then by above theorem $A=E_{k} \cdots E_{1}$ for some $k \in \mathbb{N}$, equivalently $E_{1}^{-1} \cdots E_{k}^{-1} A=I$. Thus A can be reduced to identity matrix. Conversely, if A can be reduced to the identity matrix I_{n} by performing a finite sequence of elementary row operations on A. Then there exist elementary matrices $E_{1}, E_{2}, \ldots, E_{k}$ such that $E_{k} \cdots E_{1} A=I$, then $A=E_{1}^{-1} \cdots E_{s}^{-1}$. Therefore, A is invertible as product of invertible matrices is invertible.

Gauss-Jordan Method for finding inverse: Let A be an invertible matrix. Then there exist elementary matrices $E_{1}, E_{2}, \ldots, E_{k}$ such that $I=E_{k} E_{k-1} \ldots E_{1} A$ which is equivalent to $A^{-1}=E_{k} E_{k-1} \ldots E_{1} I$. This shows that sequence of elementary operations which reduces A to the identity matrix I, also reduces I to A^{-1} by performing in the same order.
Example 7. Find inverse of $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right)$ by using Gauss-Jordan method.
$(A \mid I)=\left(\begin{array}{lll|lll}1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 2 & 3 & 0 & 0 & 1\end{array}\right) \xrightarrow[R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}]{\sim}\left(\begin{array}{ccc|ccc}1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 2 & -1 & 0 & 1\end{array}\right)$
$\stackrel{R_{3} \rightarrow R_{3}-R_{2}, R_{1} \rightarrow R_{1}-R_{2}}{\sim}\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 2 & -1 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 2 & 0 & -1 & 1\end{array}\right) \stackrel{R_{3} \rightarrow R_{3} / 2}{\sim}\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 2 & -1 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 / 2 & 1 / 2\end{array}\right)$
$\stackrel{R_{1} \rightarrow R_{1}-R_{3}}{\sim}\left(\begin{array}{ccc|ccc}1 & 0 & 0 & 2 & -1 / 2 & -1 / 2 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 / 2 & 1 / 2\end{array}\right)=\left(I \mid A^{-1}\right)$
Therefore, $A^{-1}=\left(\begin{array}{ccc}2 & -1 / 2 & -1 / 2 \\ -1 & 1 & 0 \\ 0 & -1 / 2 & 1 / 2\end{array}\right)$.
Gauss-Jordan elimination method for finding solutions of a system of linear equations Let $A X=B$ be a system of linear equations. Now consider the augmented matrix $(A \mid B)$. Apply finite number of elementary row operations to get the form $\left(A^{\prime} \mid B^{\prime}\right)$. Here $\left(A^{\prime} \mid B^{\prime}\right)$ is row reduced echelon form of the matrix $(A \mid B)$. Thus $\left(A^{\prime} \mid B^{\prime}\right)$ is row equivalent to $(A \mid B)$, therefore $A X=B$ and $A^{\prime} X=B^{\prime}$ are equivalent systems and hence they have the same solution.

Example 2: Solve the following system of linear equations
$x+3 y+z=9$
$x+y-z=1$
$3 x+11 y+5 z=35$.
Solution: $(A \mid B)=\left(\begin{array}{ccc|c}1 & 3 & 1 & 9 \\ 1 & 1 & -1 & 1 \\ 3 & 11 & 5 & 35\end{array}\right) \xrightarrow[R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-3 R_{1}]{\sim}\left(\begin{array}{ccc|c}1 & 3 & 1 & 9 \\ 0 & -2 & -2 & -8 \\ 0 & 2 & 2 & 8\end{array}\right)$
$\stackrel{R_{3} \rightarrow R_{3}-R_{2}}{\sim}\left(\begin{array}{ccc|c}1 & 3 & 1 & 9 \\ 0 & -2 & -2 & -8 \\ 0 & 0 & 0 & 0\end{array}\right) \stackrel{R_{2} \rightarrow-R_{2} / 2}{\sim}\left(\begin{array}{lll|l}1 & 3 & 1 & 9 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0\end{array}\right) \stackrel{R_{1} \rightarrow R_{1}-3 R_{2}}{\sim}\left(\begin{array}{ccc|c}1 & 0 & -2 & -3 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0\end{array}\right)=\left(A^{\prime} \mid B^{\prime}\right)$.

The equivalent system is

$$
\begin{gathered}
x-2 z=-3 \\
y+z=4 .
\end{gathered}
$$

The solution set is $\{(2 z-3,4-z, z): z \in \mathbb{R}\}$.
Definition 8. A system of linear equation $A x=b$ is said to be consistent if it has at least one solution (unique or infinitely many) and the system is called inconsistent if it has no solution.

Theorem 9. Consider a system of linear equation $A x=b$, where $A \in M_{m \times n}(\mathbb{R})$. Suppose R and $\left(R \mid b^{\prime}\right)$ are the $R R E$ forms of A and $(A \mid b)$ respectively. Let r and r^{\prime} be the number of non-zero rows in R and $(R \mid b)$. Then

1. if $r \neq r^{\prime}$, the system is inconsistent.
2. if $r=r^{\prime}=n$, the system the unique solution.
3. if $r=r^{\prime}<n$, the system has infinitely many solutions.

Proof. Case 1: Note that $r^{\prime} \geq r$. If $r \neq r^{\prime}$, then $\left(R \mid b^{\prime}\right)_{r+1, n+1}=1$ whereas $\left(R \mid b^{\prime}\right)_{r+1, j}=0$ for all $j<n+1$. Suppose the system $A x=b$ is consistent and y is one of its solutions. Then y is a solution of $R x=b^{\prime}$ (row-equivalent systems). The $r+1$-th equation of $R x=b^{\prime}$ gives that $0=1$, which is absurd, hence the system has no solution, that is, the system is inconsistent.

Case 2: If $r=r^{\prime}=n$, then $\left(R \mid b^{\prime}\right)=\left(\begin{array}{c|c}I_{n} & b_{n \times 1}^{\prime \prime} \\ 0_{m-n \times n} & 0_{m-n \times 1}\end{array}\right)$. Therefore, $x=b^{\prime \prime}$ is the only solution of the system $A x=b$.

Case 3: If $r=r^{\prime}<n$, then $\left(R \mid b^{\prime}\right)=\left(\begin{array}{c|c}R_{r \times n}^{\prime} & b_{r \times 1}^{\prime \prime} \\ 0_{m-r \times n} & 0_{m-r \times 1}\end{array}\right)$ so that the system $R x=b^{\prime}$ is equivalent to the system $R^{\prime} x=b^{\prime \prime}$ for which the number of equations is less than the number of variables. Thus, $R^{\prime} x=b^{\prime \prime}$ has infinitely many solutions and so $R x=b^{\prime}$ as well as $A x=b$.

Example 3: Find $a, b \in \mathbb{R}$ such that the following system of equations (i) is consistent, and (ii) is inconsistent (iii) has a unique solution (iv) has infinitely many solutions.

$$
x+a y=1,2 x+y=b .
$$

The augmented matrix of the system is $\left(\begin{array}{cc|c}1 & a & 1 \\ 2 & 1 & b\end{array}\right)$. Thus,

$$
\left(\begin{array}{ll|l}
1 & a & 1 \\
2 & 1 & b
\end{array}\right) \stackrel{R_{2} \rightarrow R_{2}-2 R_{1}}{\sim}\left(\begin{array}{cc|c}
1 & a & 1 \\
0 & 1-2 a & b-2
\end{array}\right)
$$

Case 1: If $1-2 a=0$ and $b-2 \neq 0$. Then, the RRE form is $\left(\begin{array}{cc|c}1 & a & 1-\frac{1}{b-2} \\ 0 & 0 & 1\end{array}\right)$. Thus, $r=1$ and $r^{\prime}=2$. Therefore, the system has no solution (system is inconsistent).

Case 2: If $1-2 a=0$ and $b-2=0$. Then, the RRE form is $\left(\begin{array}{cc|c}1 & a & 1-\frac{1}{b-2} \\ 0 & 0 & 0\end{array}\right)$. Thus, $r=r^{\prime}=1<2$. Therefore, the system has infinitely many solutions.
Case 3: If $1-2 a \neq 0$ and $b \in \mathbb{R}$. Then, the RRE form is $\left(\begin{array}{cc|c}1 & 0 & 1-a \frac{b-2}{1-2 a} \\ 0 & 1 & \frac{b-2}{1-2 a}\end{array}\right)$. Thus, $r=r^{\prime}=2$. Therefore, the system has unique solution.

Hence,
(i) the system is consistent when either $a \neq 1 / 2$, and $b \in \mathbb{R}$ or $a=1 / 2$ and $b=2$.
(ii) the system is inconsistent when $a=1 / 2$ and $b \neq 2$.
(iii) the system has a unique solution if $a \neq 1 / 2$ and $b \in \mathbb{R}$.
(iv) the system has infinitely many solutions if $a=1 / 2$ and $b=2$.

