Lecture 4
Invertible Matrix & Gauss-Jordan Method

Definition 1. Invertible Matrix: A square matriz M is said to be invertible if there exists a matrix
N of the same order such that MN = NM = I. The matriz N is called inverse of M and is denoted as
M1,

Theorem 2. Let A and B be two n x n matrices then: (a) if A is invertible, then so is A™! with
(A™H~1 = A; (b) if both A and B are invertible, then so is AB with (AB)™! = B~1A~1.

Theorem 3. An elementary matrix is invertible.

Proof: Let E be an elementary matrix corresponding to the elementary row operation p. If p’ is
the inverse operation of p and E' = p/(I), then EE' = p(I)p'(I) = p(p'(I)) = (po p)(I) = I and
E'E=pp(I)=p(p(I)) = (p op)(I) =1 so that E is invertible. O

Theorem 4. Let A be an m x n matrix. Then by applying a sequence of row and column operations A

[ [r><r Orx(nfr) ]
O(m—r)xr O(m—r)x(n—'r) .

which is called the normal form of the matrix, equivalently, there exist elementary row matrices

can be reduced to the form

Ey, ..., E,, and elementary column matrics Fi, ..., Fj such that

ElEsAFle:
O(nfr)xr O(nfr)x(nfr)

]rxr 07"><(n—7“) ]

Theorem 5. Let A be an n x n matrix. Then A is invertible if and only if A is a product of elementary

matrices.

Proof: If A is an invertible matrix then there exist elementary matrices Fy, ..., Ey, Fi, ..., F} such
that

E,-- EAF, - F, =

Iy 0T><(n—7’) ] -7
O(n—r)xr O(n—r)x(n—r)

Therefore, A = E;'...E;'I, F,;'...F;'. Note that an elementary column matrix is one of the
elementary row matrices. Further, inverse of an elementary matrix is again an elementary matrix. Hence,
A is a product of elementary matrices. Converse follows from the fact that the product of invertible

matrices is invertible. O



Theorem 6. Let A be an n x n matrix. Then A is invertible if and only if A can be reduced to the

identity matrix I,, by performing a finite sequence of elementary row operations on A.

Proof: If A is invertible then by above theorem A = Ej---FE; for some k € N, equivalently
E;' - E;'A = 1. Thus A can be reduced to identity matrix. Conversely, if A can be reduced to
the identity matrix I, by performing a finite sequence of elementary row operations on A. Then there
exist elementary matrices Ey, Fs, ..., By such that Ej--- EyA = I, then A = E;*--- E7'. Therefore, A

is invertible as product of invertible matrices is invertible.

Gauss-Jordan Method for finding inverse: Let A be an invertible matrix. Then there exist elemen-
tary matrices Ey, Es, ..., B} such that I = E,E,_; ... E1 A which is equivalent to A~ = E,E,_, ... E\1.
This shows that sequence of elementary operations which reduces A to the identity matrix I, also reduces

I to A~! by performing in the same order.

111
Example 7. Find inverse of A= |1 2 1| by using Gauss-Jordan method.
1 2 3
11 1(1 0 0 11 1
(AD=[1 2 1o 1 o ®7R= Mg 1 o] -1 1
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Mol g 1 0l -1 1 0 |=wu|Aa™
0010 -—-1/2 1/2
2 —1/2 —1/2
Therefore, A= = | —1 1 0

0 —1/2 1/2

Gauss-Jordan elimination method for finding solutions of a system of linear equations Let
AX = B be a system of linear equations. Now consider the augmented matrix (A|B). Apply finite
number of elementary row operations to get the form (A’'|B’). Here (A'|B’) is row reduced echelon form
of the matrix (A|B). Thus (A'|B’) is row equivalent to (A|B), therefore AX = B and A’X = B’ are

equivalent systems and hence they have the same solution.



Example 2: Solve the following system of linear equations

r+3y+2=9
r+y—z=1
3v + 11y + 5z = 35.

13 119 1 3 119
Solution: (A|B) = |1 -1 femferfyfamla=sin g 9 o] 8
3 11 5 |35 0 2 28
13 119 1 3 1|9 10 —2|-3
Boofee g g o g [ TR 0 1 g R 0 1 1 g | =By,
0O 0 00 00 00 00 0
The equivalent system is
T —2z2=-3
y+z=4.

The solution set is {(2z — 3,4 — z,2) : z € R}.

Definition 8. A system of linear equation Ax = b is said to be consistent if it has at least one solution

(unique or infinitely many) and the system is called inconsistent if it has no solution.

Theorem 9. Consider a system of linear equation Ax = b, where A € M,,sn(R). Suppose R and (R|b')
are the RRE forms of A and (A|b) respectively. Let r and 1’ be the number of non-zero rows in R and

(R|b). Then

1. if r #1', the system is inconsistent.

2. if r =1’ = n, the system the unique solution.

3. if r = 71" < n, the system has infinitely many solutions.
Proof. Case 1: Note that v > r. If r # 1/, then (R|V),41,,41 = 1 whereas (R|0'),11,;, =0 for all j <n+1.
Suppose the system Az = b is consistent and y is one of its solutions. Then y is a solution of Rz = V'

(row-equivalent systems). The r + 1-th equation of Rz = b’ gives that 0 = 1, which is absurd, hence the

system has no solution, that is, the system is inconsistent.



[n /!
Case 2: If r = v’ = n, then (R|V) = <O 0 il ) Therefore, = " is the only solution of the
m—nxn m—nx1
system Ax = b.
R/ b//
Case 3: If r = 71" < n, then (R|V) = 0 e 0 "1 ] so that the system Rz = b’ is equivalent to the
m—rXxn m—rx1

system R'x =" for which the number of equations is less than the number of variables. Thus, R'z = b”

has infinitely many solutions and so Rz = b as well as Az = b. O

Example 3: Find a,b € R such that the following system of equations (i) is consistent, and (ii) is

inconsistent (iii) has a unique solution (iv) has infinitely many solutions.

r4+ay=12zx+y=0>o.

1
. Thus,
b

1 Ra—Ry—2R, 1 a
b 0 1-—2a

1
The augmented matrix of the system is (2

1 a
2 1

1
b—2

1 1- L
Case 1: If 1 —2a =0 and b — 2 # 0. Then, the RRE form is (0 g 1b_2>. Thus, r =1 and ' = 2.
Therefore, the system has no solution (system is inconsistent).
. 1 a|l-— ﬁ
Case 2: If 1 —2a =0 and b — 2 = 0. Then, the RRE form is 00 O_ . Thus, r=7"=1< 2.

Therefore, the system has infinitely many solutions.

1 0[1—al2
Case 3: If 1 —2a # 0 and b € R. Then, the RRE form is (O X bC_L;_%)- Thus, r = 1/ = 2.
1—2a

Therefore, the system has unique solution.
Hence,
(i) the system is consistent when either a # 1/2, and b € R or a = 1/2 and b = 2.
(ii) the system is inconsistent when a = 1/2 and b # 2.
(iii) the system has a unique solution if a # 1/2 and b € R.

(iv) the system has infinitely many solutions if @ = 1/2 and b = 2.



