
Lecture 4

Invertible Matrix & Gauss-Jordan Method

Definition 1. Invertible Matrix: A square matrix M is said to be invertible if there exists a matrix

N of the same order such that MN = NM = I. The matrix N is called inverse of M and is denoted as

M−1.

Theorem 2. Let A and B be two n × n matrices then: (a) if A is invertible, then so is A−1 with

(A−1)−1 = A; (b) if both A and B are invertible, then so is AB with (AB)−1 = B−1A−1.

Theorem 3. An elementary matrix is invertible.

Proof: Let E be an elementary matrix corresponding to the elementary row operation ρ. If ρ′ is

the inverse operation of ρ and E ′ = ρ′(I), then EE ′ = ρ(I)ρ′(I) = ρ(ρ′(I)) = (ρ ◦ ρ′)(I) = I and

E ′E = ρ′(I)ρ(I) = ρ′(ρ(I)) = (ρ′ ◦ ρ)(I) = I so that E is invertible. �

Theorem 4. Let A be an m× n matrix. Then by applying a sequence of row and column operations A

can be reduced to the form [
Ir×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
m×n

which is called the normal form of the matrix, equivalently, there exist elementary row matrices

E1, . . . , Es, and elementary column matrics F1, . . . , Fk such that

E1 · · ·EsAF1 · · ·Fk =

[
Ir×r 0r×(n−r)

0(n−r)×r 0(n−r)×(n−r)

]
.

Theorem 5. Let A be an n× n matrix. Then A is invertible if and only if A is a product of elementary

matrices.

Proof: If A is an invertible matrix then there exist elementary matrices E1, . . . , Es, F1, . . . , Fk such

that

E1 · · ·EsAF1 · · ·Fk =

[
Ir×r 0r×(n−r)

0(n−r)×r 0(n−r)×(n−r)

]
= In.

Therefore, A = E−1s . . . E−11 In F−1k . . . F−11 . Note that an elementary column matrix is one of the

elementary row matrices. Further, inverse of an elementary matrix is again an elementary matrix. Hence,

A is a product of elementary matrices. Converse follows from the fact that the product of invertible

matrices is invertible. �
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Theorem 6. Let A be an n × n matrix. Then A is invertible if and only if A can be reduced to the

identity matrix In by performing a finite sequence of elementary row operations on A.

Proof: If A is invertible then by above theorem A = Ek · · ·E1 for some k ∈ N, equivalently

E−11 · · ·E−1k A = I. Thus A can be reduced to identity matrix. Conversely, if A can be reduced to

the identity matrix In by performing a finite sequence of elementary row operations on A. Then there

exist elementary matrices E1, E2, . . . , Ek such that Ek · · ·E1A = I, then A = E−11 · · ·E−1s . Therefore, A

is invertible as product of invertible matrices is invertible.

Gauss-Jordan Method for finding inverse: Let A be an invertible matrix. Then there exist elemen-

tary matrices E1, E2, . . ., Ek such that I = EkEk−1 . . . E1A which is equivalent to A−1 = EkEk−1 . . . E1I.

This shows that sequence of elementary operations which reduces A to the identity matrix I, also reduces

I to A−1 by performing in the same order.

Example 7. Find inverse of A =


1 1 1

1 2 1

1 2 3

 by using Gauss-Jordan method.

(A|I) =


1 1 1 1 0 0

1 2 1 0 1 0

1 2 3 0 0 1

 R2→R2−R1,R3→R3−R1∼


1 1 1 1 0 0

0 1 0 −1 1 0

0 1 2 −1 0 1



R3→R3−R2,R1→R1−R2∼


1 0 1 2 −1 0

0 1 0 −1 1 0

0 0 2 0 −1 1

 R3→R3/2∼


1 0 1 2 −1 0

0 1 0 −1 1 0

0 0 1 0 −1/2 1/2



R1→R1−R3∼


1 0 0 2 −1/2 −1/2

0 1 0 −1 1 0

0 0 1 0 −1/2 1/2

 = (I | A−1)

Therefore, A−1 =


2 −1/2 −1/2

−1 1 0

0 −1/2 1/2

 .

Gauss-Jordan elimination method for finding solutions of a system of linear equations Let

AX = B be a system of linear equations. Now consider the augmented matrix (A|B). Apply finite

number of elementary row operations to get the form (A′|B′). Here (A′|B′) is row reduced echelon form

of the matrix (A|B). Thus (A′|B′) is row equivalent to (A|B), therefore AX = B and A′X = B′ are

equivalent systems and hence they have the same solution.
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Example 2: Solve the following system of linear equations

x+ 3y + z = 9

x+ y − z = 1

3x+ 11y + 5z = 35.

Solution: (A|B) =


1 3 1 9

1 1 −1 1

3 11 5 35

 R2→R2−R1,R3→R3−3R1∼


1 3 1 9

0 −2 −2 −8

0 2 2 8


R3→R3−R2∼


1 3 1 9

0 −2 −2 −8

0 0 0 0

 R2→−R2/2∼


1 3 1 9

0 1 1 4

0 0 0 0

 R1→R1−3R2∼


1 0 −2 −3

0 1 1 4

0 0 0 0

 = (A′|B′).

The equivalent system is

x− 2z = −3

y + z = 4.

The solution set is {(2z − 3, 4− z, z) : z ∈ R}.

Definition 8. A system of linear equation Ax = b is said to be consistent if it has at least one solution

(unique or infinitely many) and the system is called inconsistent if it has no solution.

Theorem 9. Consider a system of linear equation Ax = b, where A ∈ Mm×n(R). Suppose R and (R|b′)
are the RRE forms of A and (A|b) respectively. Let r and r′ be the number of non-zero rows in R and

(R|b). Then

1. if r 6= r′, the system is inconsistent.

2. if r = r′ = n, the system the unique solution.

3. if r = r′ < n, the system has infinitely many solutions.

Proof. Case 1: Note that r′ ≥ r. If r 6= r′, then (R|b′)r+1,n+1 = 1 whereas (R|b′)r+1,j = 0 for all j < n+ 1.

Suppose the system Ax = b is consistent and y is one of its solutions. Then y is a solution of Rx = b′

(row-equivalent systems). The r + 1-th equation of Rx = b′ gives that 0 = 1, which is absurd, hence the

system has no solution, that is, the system is inconsistent.
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Case 2: If r = r′ = n, then (R|b′) =

(
In b′′n×1

0m−n×n 0m−n×1

)
. Therefore, x = b′′ is the only solution of the

system Ax = b.

Case 3: If r = r′ < n, then (R|b′) =

(
R′r×n b′′r×1

0m−r×n 0m−r×1

)
so that the system Rx = b′ is equivalent to the

system R′x = b′′ for which the number of equations is less than the number of variables. Thus, R′x = b′′

has infinitely many solutions and so Rx = b′ as well as Ax = b.

Example 3: Find a, b ∈ R such that the following system of equations (i) is consistent, and (ii) is

inconsistent (iii) has a unique solution (iv) has infinitely many solutions.

x+ ay = 1, 2x+ y = b.

The augmented matrix of the system is

(
1 a 1

2 1 b

)
. Thus,

(
1 a 1

2 1 b

)
R2→R2−2R1∼

(
1 a 1

0 1− 2a b− 2

)

Case 1: If 1− 2a = 0 and b− 2 6= 0. Then, the RRE form is

(
1 a 1− 1

b−2

0 0 1

)
. Thus, r = 1 and r′ = 2.

Therefore, the system has no solution (system is inconsistent).

Case 2: If 1 − 2a = 0 and b − 2 = 0. Then, the RRE form is

(
1 a 1− 1

b−2

0 0 0

)
. Thus, r = r′ = 1 < 2.

Therefore, the system has infinitely many solutions.

Case 3: If 1 − 2a 6= 0 and b ∈ R. Then, the RRE form is

(
1 0 1− a b−2

1−2a

0 1 b−2
1−2a

)
. Thus, r = r′ = 2.

Therefore, the system has unique solution.

Hence,

(i) the system is consistent when either a 6= 1/2, and b ∈ R or a = 1/2 and b = 2.

(ii) the system is inconsistent when a = 1/2 and b 6= 2.

(iii) the system has a unique solution if a 6= 1/2 and b ∈ R.

(iv) the system has infinitely many solutions if a = 1/2 and b = 2.
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