Lecture 24 Jordan-Canonical Form

We know that not every matrix is similar to a diagonal matrix. Here, we discuss the simplest matrix to which a square matrix is similar. This simplest matrix coincides with a diagonal matrix if the matrix is diagonalizable.

Definition 1. A square matrix A is called **block diagonal** if A has the form

A_1	0	 0 \	
0	A_2	 0	
	÷	 :	;
0	0	 A_k	

where A_i is a square matrix and the diagonal entries of A_i lie on the diagonal of A.

Definition 2. Let $\lambda \in \mathbb{C}$. A Jordan block $J(\lambda)$ is an upper triangular matrix whose all diagonal entries are λ , all entries of the superdiagonal (entries just above the diagonal) are 1 and other entries are zero. Therefore,

	λ	1	0		$0 \rangle$	
	0	λ	1		0	
$J(\lambda) =$:	÷		:		
	0	0		λ	1	
	$\left(0 \right)$	0		0	λ	

Definition 3. A Jordan form or Jordan-Canonical form is a block diagonal matrix whose each block is a Jordan block, that is, Jordan form is a matrix of the following form

J_1	0	 0 \	
0	J_2	 0	
:	÷	 :	•
0	0	 J_k	

Definition 4. Let $T: V \to V$ be a linear transformation and $\lambda \in \mathbb{C}$. A non-zero vector $v \in V$ is called a generalized eigenvector of T corresponding to Λ if $(T - \lambda I)^p(v) = 0$ for some positive integer p.

The generalized eigenspace of T corresponding to λ , denoted by K_{λ} , is the subset of V defined by

 $K_{\lambda} = \{ v \in V \mid (T - \lambda I)^{p}(v) = 0 \text{ for some natural number } p \}.$

Remark 5. 1. If $v \in V$ is a generalized eigenvector of a linear transformation T corresponding to $\lambda \in \mathbb{C}$, then λ is an eigenvalue of T.

2. The generalized eigenspace K_{λ} is a subspace of V and $Tx \in K_{\lambda}$ for all $x \in K_{\lambda}$.

3. Let E_{λ} be the eigenspace corresponding to λ . Them $E_{\lambda} \subset K_{\lambda}$.

Theorem 6. Let J be an $m \times m$ Jordan block with eigenvalue λ . Then characteristic polynomial of J is equal to its minimal polynomial, that is $p_J(x) = (x - \lambda)^m = m_J(x)$.

Proof. Note that J is an upper-triangular matrix, hence the characteristic polynomial is $(x - \lambda)^m$ and the minimal polynomial is $(x - \lambda)^k$ for some $1 \le k \le m$. Here, we claim that $(J - \lambda I)^k \ne 0$ for k < m.

 $\begin{array}{l} \text{Observe that, } J - \lambda I = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix}, \ (J - \lambda I)^2 = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix} \text{ and } (J - \lambda I)^{m-1} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix} \text{ so that the minimal polynomial of } J \text{ is } (x - \lambda)^m. \qquad \Box$

Remark 7. 1. If a matrix A is similar to a Jordan block of order m with eigenvalue λ , then there exist an invertible matrix P such that $P^{-1}AP = J$. Let X_i be the *i*-th column of P. Then $\{X_1, X_2, \ldots, X_m\}$ is a basis of \mathbb{R}^m , which is called **Jordan basis**.

2. The vector X_1 is an eigenvector corresponding to λ and $X_{j-1} = (A - \lambda)X_j$ for $j = 2, \ldots, m$.

Theorem 8. An $m \times m$ matrix A is similar to an $m \times m$ Jordan block J with eigenvalue λ if and only if there exist m independent vectors X_1, X_2, \ldots, X_m such that $(A - \lambda I)X_1 = 0$, $(A - \lambda I)X_2 = X_1, \ldots, (A - \lambda I)X_m = X_{m-1}$.

Example 9. Consider $A = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}$. Then the characteristic polynomial and minimal polynomial are the same which is $(x - 2)^2$. Hence the matrix in not diagonalizable. Here, (1, -1) is an eigenvector corresponding to 2. If J is the Jordan form of A, then we have a basis $\{X_1, X_2\}$ with respect to which the matrix representation of A is J. By previous theorem X_1 is an eigenvector and X_2 can be found by solving $(A - 2I)X_2 = X_1$. Set $X_1 = (1, -1)$, then $X_2 = (1, 0)$. Now construct $P = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ and verify that $P^{-1}AP = J$, where $J = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$.

Theorem 10. Let A be an $n \times n$ matrix with the characteristic polynomial $(x - \lambda_1)^{r_1} \cdots (x - \lambda_k)^{r_k}$, where λ_i 's are distinct. Then A is similar to a matrix of the following form

$$\begin{pmatrix} J_1 & 0 & \dots & 0 \\ 0 & J_2 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & J_k \end{pmatrix},$$

where J_1, J_2, \ldots, J_k are Jordan blocks. The matrix J is unique except for the order of the blocks J_1, J_2, \ldots, J_k .

Remark 11. 1. The sum of orders of the blocks corresponding to λ_i is r_i (the A.M. (λ_i)).

2. The order of the largest block associated to λ_i is s_i , the exponent of $x - \lambda_i$ in the minimal polynomial of A.

3. The number of blocks associated with the eigenvalue λ_i is equal to the $GM(\lambda_i)$.

4. Knowing the characteristic polynomial and the minimal polynomial and the geometric multiplicity of each eigenvalue λ_i need not be sufficient to determine Jordan form of a matrix.

Example 12. Let A be a matrix with characteristic polynomial $(x-1)^3(x-2)^2$ and minimal polynomial $(x-1)^2(x-2)$. Then we can find the Jordan form J of A by using above remarks,

(i) The eigenvalue 1 appears on the diagonal 3 times, and 2 appears 2 times.

(ii) The largest Jordan block corresponding to $\lambda = 1$ is of order 2 (exponent of (x - 1) in the minimal polynomial), and the largest Jordan block corresponding to $\lambda = 2$ is of order 1.

(iii) The number number of Jordan blocks corresponding to $\lambda = 1$ is 2 where one block is of order 2 and other is of order 1. (iv) The number number of Jordan blocks corresponding to $\lambda = 2$ is 2 where both the blocks are of order 1. Therefore, the Jordan form of A is

Example 13. Let A be a matrix with characteristic polynomial $(x-1)^3(x-2)^2$ and minimal polynomial $(x-1)^3(x-2)^2$. Then

(i) The eigenvalue 1 appears on the diagonal 3 times, and 2 appears 2 times.

(ii) The largest Jordan block corresponding to $\lambda = 1$ is of order 3 (exponent of (x - 1) in the minimal polynomial), and the largest Jordan block corresponding to $\lambda = 2$ is of order 2.

(iii) The number number of Jordan blocks corresponding to $\lambda = 1$ is 1. (iv) The number number of Jordan blocks corresponding to $\lambda = 2$ is 1. Therefore, the Jordan form of A is

$$\begin{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} & & \\ & & & \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \end{pmatrix}.$$

Example 14. minimal and characteristic are not always sufficient Let A be a matrix with characteristic polynomial $(x - 1)^4$ and minimal polynomial $(x - 1)^2$. Then

(i) The eigenvalue 1 appears on the diagonal 4 times.

(ii) The largest Jordan block corresponding to $\lambda = 1$ is of order 2 (exponent of (x - 1) in the minimal polynomial).

(iii) The number number of Jordan blocks corresponding to $\lambda = 1$ is GM(1) which is not known. Note that $GM(1) \leq 4$ as minimal polynomial confirms that A is not diagonalizable. Also, $GM(1) \neq 1$, if GM(1) = 1, the the Jordan matrix has only one block corresponding to $\lambda = 1$ which must be of order 4, which is not true.

(iv) Thus GM(1) = 2 or 3.

(v) If GM(1) = 2 the Jordan form of A is

$$\begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} & & \\ & & \begin{pmatrix} 1 & 1 \\ & & \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \end{pmatrix}.$$

(vi) If GM(1) = 3, the Jordan form of A is

$$\begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} & & \\ & & (1) \\ & & & (1) \end{pmatrix}.$$

Example 15. Possible Jordan forms for a given characteristic polynomial Let A be a matrix with characteristic polynomial $(x - 1)^3(x - 2)^2$. Then choices of minimal polynomials are (i)(x - 1)(x - 2), then Jordan form is the diagonal matrix. (ii) $(x - 1)^2(x - 2)$, Example 12.

$$(iii) (x-1)^{3}(x-2), \text{ the Jordan form is} \begin{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \\ (iv) (x-1)(x-2)^{2}, \begin{pmatrix} \begin{pmatrix} 1 & & & \\ &$$

Example 16. (minimal, characteristic and $GM(\lambda)$ are not always sufficient) Let A be a matrix with characteristic polynomial $(x-1)^7$ and minimal polynomial $(x-1)^3$ and GM(1) = 3. Then there are two possible Jordan forms (write the corresponding Jordan forms yourself!):

(i) One Jordan block of order 3 and other two blocks of order 2.

(ii) Two Jordan blocks of order 3 and one of order 1.

Example 17. Find a Jordan basis Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$. The characteristic polynomial of A is

 $(x-1)^3 \text{ and } A-I = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}. \text{ Thus nullity}(A-I) \text{ is } 1=GM(1). \text{ Therefore, the Jordan form of } A \text{ is } J = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}. \text{ The problem is to find a Jordan basis or a matrix } P \text{ such that } P^{-1}AP = J. P = [X_1 X_2 X_3], \text{ where } (A-I)X_1 = X_1, (A-I)X_2 = X_1, (A-I)X_3 = X_2. \text{ On solving, we get } X_1 = (1,0,-1), X_2 = (1,1,-1) \text{ or } (-1,1,1) \text{ and } X_3 = (1,1,0) \text{ or } (0,1,1). \text{ Hence, } P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 0 \end{pmatrix}.$

Example 18. (Finding a Jordan basis is not always straight forward)

Let
$$A = \begin{pmatrix} 3 & 1 & 0 \\ -1 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$$
. The characteristic polynomial of A is $(x-2)^3$ and $A - 2I = \begin{pmatrix} 1 & 1 & 0 \\ -1 & -1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$.

Thus nullity(A - I2) is 2 = GM(2). Therefore, the Jordan form of A is $J = \begin{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \\ & (2) \end{pmatrix}$. The

problem is to find a Jordan basis or a matrix P such that $P^{-1}AP = J$. $P = [X_1 X_2 X_3]$. Here, we get an eigenvector (x, y, z) satisfies x + y = 0, two independent eigenvectors are (0, 0, 1) and (-1, 1, 0). Note that each eigenvector corresponds to a Jordan block. Thus, set $X_1 = (0, 0, 1)$, $(A - 2I)X_2 = X_1$,

$$X_3 = (-1, 1, 0) \text{ or }$$
. But, $(A - 2I)X_2 = X_1 \Rightarrow \begin{pmatrix} 1 & 1 & 0 \\ -1 & -1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ which is an inconsistent

system. Similarly, $(A - 2I)X_2 = X_1$, where $X_1 = (-1, 1, 0)$ is inconsistent. For finding a Jordan basis, we will change the eigenvector, let $X_1 = (-1, 1, -1)$, then $X_2 = (0, -1, 0)$, and $X_3 = (-1, 1, 0)$ Hence, $\begin{pmatrix} -1 & 0 & -1 \end{pmatrix}$

$$P = \begin{pmatrix} -1 & 0 & -1 \\ 1 & -1 & 1 \\ -1 & 0 & 0 \end{pmatrix}.$$