Lecture 23

Classification of Conics \& Surfaces

Classification of Conics A conic is a curve in \mathbb{R}^{2} which is represented by an equation of second degree in two variable, called quadratic curve. The general equation of such a conic (quadratic curve) is given by

$$
\begin{equation*}
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \tag{1}
\end{equation*}
$$

where $a, b, h, g, f, c \in \mathbb{R}$ and $(a, b, h) \neq(0,0,0)$.
Then Equation (1) can be written as $(x, y)\left(\begin{array}{ll}a & h \\ h & b\end{array}\right)\binom{x}{y}+(2 g, 2 f)\binom{x}{y}+c=0$. Here, $H(X)=$ $(x, y)\left(\begin{array}{ll}a & h \\ h & b\end{array}\right)\binom{x}{y}=X^{T} A X$ is called the associated quadratic form of the conic (1), where $A=\left(\begin{array}{ll}a & h \\ h & b\end{array}\right)$ is a symmetric matrix. Suppose λ_{1}, λ_{2} are eigenvalues of A and P is an orthogonal matrix such that $\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)=P^{T} A P$. Then Equation (1) can be written as $(x, y) P\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) P^{T}\binom{x}{y}++(2 g, 2 f)\binom{x}{y}+$ $c=0$. Set $\binom{x^{\prime}}{y^{\prime}}=P^{T}\binom{x}{y}$. Then Equation (1) can be written as $\lambda_{1} x^{\prime 2}+\lambda_{2} y^{\prime 2}+2 g^{\prime} x^{\prime}+2 f^{\prime} y^{\prime}+c^{\prime}=0$. If $\lambda_{1}, \lambda_{2} \neq 0$, then equation can be reduced to the following form

$$
\lambda_{1}\left(x^{\prime}+\alpha\right)^{2}+\lambda_{2}\left(y^{\prime}+\beta\right)^{2}=\mu
$$

If $\lambda_{1}=0$ and $\lambda_{2} \neq 0$, the reduced equation is of the form $\lambda_{2}\left(y_{2}^{\prime}+\beta\right)^{2}=\gamma x+\mu$ (similarly when $\lambda_{1} \neq 0, \lambda_{2}=0$). If $\lambda_{1}=\lambda_{2}=0$, then $2 g^{\prime} x^{\prime}+2 f^{\prime} y^{\prime}+c^{\prime}=0$.

Proposition 1. Consider the quadratic $F(x, y)=a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c$, for $a, b, c, g, f, h \in \mathbb{R}$. If $(a, b, h) \neq(0,0,0)$ then the conic $F(x, y)=0$ can be classified as follows.

λ_{1}	λ_{2}	μ	conic
+ve	+ve	+ve	ellipse
$+\mathrm{ve},-\mathrm{ve}$	$-\mathrm{ve},+\mathrm{ve}$	non-zero	hyperbola
+ve	+ve	- -ve	no real curve exists
+ve	+ve	0	single point
-ve	-ve	0	single point
$+\mathrm{ve},-\mathrm{ve}$	$-\mathrm{ve},+\mathrm{ve}$	0	pair of straight lines
0	$\pm \mathrm{ve}$		parabola $(\gamma \neq 0)$ or single line $(\gamma=0=$ $\mu)$ or pair of parallel lines $\left(\mu \lambda_{2}>0\right)$ or two imaginary lines $\left(\mu \lambda_{2}<0\right)$
$\pm \mathrm{ve}$	0		similar as above
0	0		single straight line

Example 2. Identify the conic $3 x^{2}-2 x y+3 y^{2}-8 \sqrt{2} x+10=0$

Solution: The matrix form is $(x, y)\left(\begin{array}{cc}3 & -1 \\ -1 & 3\end{array}\right)+(-8 \sqrt{2}, 0)\binom{x}{y}+10=0$. Eigenvalues of $A=\left(\begin{array}{cc}3 & -1 \\ -1 & 3\end{array}\right)$ are 2 , 4. The corresponding orthogonal matrix $P=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$ such that $P^{T} A P=D$. Write $\binom{x}{y}=$ $P\binom{x^{\prime}}{y^{\prime}}$, we get $\left(x^{\prime}, y^{\prime}\right)\left(\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right)\binom{x^{\prime}}{y^{\prime}}+(-8 \sqrt{2}, 0)\binom{\frac{x^{\prime}-y^{\prime}}{\sqrt{2}}}{\frac{x^{\prime}+y^{\prime}}{\sqrt{2}}}+10=0$. By solving (expanding and making complete square), the reduced form is $2\left(x^{\prime}-2\right)^{2}+4\left(y^{\prime}+1\right)^{2}=2$, which represents an ellipse centered at $(2,-1)$.

Classification of Surfaces

A quadric surface is a surface in \mathbb{R}^{3} described by a polynomial of degree 2 in three variables. A general equation of a surface is given by $F(x, y, z)=a x^{2}+b y^{2}+c z^{2}+2 h x y+2 g x z+2 f y z+2 l x+2 m y+2 n z+q$. The matrix form $F(x, y, z)=(x, y, z)\left(\begin{array}{lll}a & h & g \\ g & b & f \\ g & f & c\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)+(2 l, 2 m, 2 n)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)+q$. Let $A=\left(\begin{array}{lll}a & h & g \\ g & b & f \\ g & f & c\end{array}\right)$ and $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be eigenvalues of A. Proceeding in a similar way as in the case of conics in \mathbb{R}^{2}, we get $F\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\lambda_{1} x^{\prime 2}+\lambda_{2} y^{\prime 2}+\lambda_{3} z^{\prime} 2+l^{\prime} x+m^{\prime} y+n^{\prime} z+q^{\prime}$. If $\lambda_{1}, \lambda_{2}, \lambda_{3} \neq 0$, the equation can be reduced to the form $\lambda_{1}\left(x^{\prime}+\alpha\right)^{2}+\lambda_{2}\left(y^{\prime}+\beta^{2}\right)+\lambda_{3}\left(z^{\prime}+\gamma\right)^{2}=\mu$. The classification of surfaces in \mathbb{R}^{3} is as follows: If

λ_{1}	λ_{2}	λ_{3}	μ	conic
+ve	+ve	+ve	+ve	ellipsoid
+ve	+ve	-ve	+ve	hyperboloid of one sheet
+ve	-ve	-ve	+ve	hyperboloid of two sheet
+ve	+ve	+ve	0	single point
-ve	-ve	-ve	0	single point
+ve	+ve	-ve	0	cone
+ve	-ve	-ve	0	cone
+ve	+ve	0	+te with coefficient of z is zero	elliptical cylinder
+ve	+ve	0	+ve with coefficient of z is non-zero	elliptical paraboloid
+ve	-ve	0	+ ve with coefficient of z is zero	hyperbolic cylinder
+ve	-ve	0	+ ve with coefficient of z is non-zero	hyperbolic paraboloid

two of the eigenvalues are zero, then the surface is either a parabolic cylinder or a pair planes or a singe plane.
Determine the following surface $F(x, y, z)=0$, where $F(x, y, z)=2 x^{2}+2 y^{2}+2 z^{2}+2 x y+2 x z+2 y z+$ $4 x+2 y+4 z+2$. Here $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right), b=\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)$ and $q=2$. The eigenvalues of A are $4,1,1$ and $P=\left(\begin{array}{ccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}}\end{array}\right)$ such that $P^{T} A P=D$, where $D=\operatorname{diag}(4,1,1)$. Hence, $F(x, y, z)=0$ reduces to
$4\left(\frac{x+y+z}{\sqrt{3}}\right)^{2}+\left(\frac{x-y}{\sqrt{2}}\right)^{2}+\left(\frac{x+y-2 z}{\sqrt{6}}\right)^{2}=-(4 x+2 y+4 z+2)$. Further, we get $4\left(\frac{4(x+y+z)+5}{4 \sqrt{3}}\right)^{2}+\left(\frac{x-y+1}{\sqrt{2}}\right)^{2}+$ $\left(\frac{x+y-2 z-1}{\sqrt{6}}\right)^{2}=9 / 12$. Equivalently, the surface can be written as $4\left(x^{\prime}+5 / 4\right)^{2}+1\left(y^{\prime}+1\right)^{2}+1\left(z^{\prime}-1\right)^{2}=9 / 12$, where $x^{\prime}=\frac{x+y+z}{\sqrt{3}}, y^{\prime}=\frac{x-y}{\sqrt{2}}, z^{\prime}=\frac{x+y-2 z}{\sqrt{6}}$. Thus, the given equation describes an ellipsoid and the principal axes are $4(x+y+z)=-5 ; x-y=1$ and $x+y-2 z=1$.

