
Lecture 22
Positive & Negative Definite Matrices & Singular Value Decomposition(SVD)

Definition 1. Let A be a real symmetric matrix. Then A is said to be positive (negative) definite if all
of its eigenvalues are positive (negative).

Definition 2. Let A be a real symmetric matrix. Then A is said to be positive (negative) semi-definite
if all of its eigenvalues are non-negative (non-positive).

Remark 3. 1. If A is positive definite, then det(A) > 0 and tr(A) > 0.
2. If A is negative definite matrix of order n, then tr(A) < 0. If n is even, det(A) > 0 and if n is odd
det(A) < 0.
3. If A is positive semi-definite, then det(A) ≥ 0 and tr(A) ≥ 0.
4. If A is negative semi-definite matrix of order n, then tr(A) ≤ 0. If n is even, det(A) ≥ 0 and if n is
odd det(A) ≤ 0.

Proposition 4. Let A ∈Mn(R) be a symmetric matrix. Then
1. A is positive definite if and only if XTAX > 0 for all 0 6= X ∈ Rn.
2. A is negative definite if and only if XTAX < 0 for all 0 6= X ∈ Rn.

Proof. Let A be positive definite. Since A is a real symmetric matrix, A is orthogonally diagonalizable
with positive eigenvalues. Therefore, A = PDP T , where D is a diagonal matrix with entries as eigenvalues
of A and P is an orthogonal matrix. Thus, XTAX = XTPDP TX = (P TX)TD(P TX) = Y TDY , where
Y = P TX 6= 0. Let Y = (y1, y2, . . . , yn)T . Then XTAX = Y TDY = λ1y

2
1 + λ2y

2
2 + · · ·+ λny

2
n > 0, where

λi are eigenvalues of A.

Conversely, let XTAX > 0 for all X ∈ Rn. Let λ ∈ R be an eigenvalue of A and X0 be an eigenvector
corresponding to λ. Then XT

0 AX0 > 0 ⇒ λXT
0 X0 > 0. Note that XT

0 X0 = ‖X0‖2 > 0 as X0 6= 0.
Therefore, λ > 0.

Proposition 5. Let A ∈Mn(R) be a symmetric matrix. Then
1. A is positive definite if and only if A = BTB for some invertible matrix B.
2. A is positive semi-definite if and only if A = BTB for some matrix B.

Proof. Let A be a positive definite matrix. Then A is symmetric, by Spectral theorem, there exists an
orthogonal matrix P such that P TAP = D with D = diag(λ1, λ2, . . . , λn), where λi’s are eigenvalues
of A. Here, λi > 0. Define

√
D = diag(

√
λ1,
√
λ2, . . . ,

√
λn). Set B =

√
DP T , then B is invertible and

BTB = A.

Conversely, XTAX = XTBTBX = (BX)T (BX) = ‖BX‖2. Therefore, for X 6= 0, XTAX > 0.

Let A ∈ Mn(R). The leading principal minor Dk of A of order k, 1 ≤ k ≤ n, is the determinant of the
matrix obtained from A by deleting last n− k rows and last n− k columns of A.

Proposition 6. Let A ∈Mn(R) be a symmetric matrix. Then
1. A is positive definite if and only if Dk > 0 for 1 ≤ k ≤ n.
2. A is negative definite if and only if (−1)kDk > 0 for 1 ≤ k ≤ n.
3. A is positive semi-definite, then Dk ≥ 0 for 1 ≤ k ≤ n. Show that the converse need not be true.
4. A is negative semi-definite, then (−1)kDk ≥ 0 for 1 ≤ k ≤ n. Show that the converse need not be true.
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Proof. The prove for this result has been omitted. To see that converse is not true in case of (3),

take A =

1 1 1
1 1 1
1 1 1/2

. Then D1 = 1, D2 = det

(
1 1
1 1

)
= 0 and D3 = det(A) = 0. The matrix is

symmetric and Dk ≥ 0 for k = 1, 2, 3. But XTAX = −2 for X = (1, 1,−2)T . Therefore, A is not positive
semi-definite.

Exercise 1. Which of the following matrices is positive definite/negative definite/positive semi-definite/
negative semi-definite.(

1 2
2 1

)
,

(
1 1
0 1

)
,

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

,


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 0

.

Singular-Value Decomposition
We know that every matrix is not diagonalizable and diagonalizability can be discussed only for square
matrices. Here we discuss a decomposition of an m×n matrix which coincide with a known decomposition
of a positive semi-definite matrix.

Let A ∈Mm×n. Then a decomposition of the form

A = UΣV T ,

where U ∈ Mm(R) and V ∈ Mn(R) are orthogonal, and Σ is a rectangular diagonal matrix with non-
negative real diagonal entries, is called Singular-Value Decomposition of A. The non-zero diagonal entries
of Σ are called singular values of A.

When A is a positive semi-definite matrix, then SVD is nothing but A = PDP T for some orthogonal
matrix P.

Theorem 7. Let A ∈Mm×n(R). Then A has a singular value decomposition.

Proposition 8. Let A ∈Mm×n(R). Then
1. ATA is positive semi-definite.
2. AAT is positive semi-definite.
3. If m ≥ n, then P T (ATA)P = D and P ′T (AAT )P ′ = D′ for some orthogonal matrices P ∈Mn(R) and
P ′ ∈Mm(R) with

D′ =

(
D 0m×m−n

0m−n×m 0m−n×m−n

)
.

Proof. Note that ATA and AAT are symmetric matrices. We claim that XTAX ≥ 0 for every X 6= 0. For
X 6= 0, XTAATX = (ATX)T (ATX) = ‖ATX‖2 ≥ 0. Therefore, AAT is positive semi-definite. Similarly
for ATA. Since the ATA and AAT are symmetric, they are orthogonally diagonalizable. Therefore,
P T (ATA)P = D and P ′T (AAT )P = D′ for some orthogonal matrices P ∈ Mm(R) and P ′ ∈ Mn(R).
Recall that pAATx = xm−npATA(x), where pAAT (x) and pATA are the characteristic polynomial of AAT

and ATA respectively. Hence, D′ =

(
D 0m×m−n

0m−n×m 0m−n×m−n

)
.
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Method to find SVD of A
Step 1: Find AAT , which is positive semi-definite matrix. Therefore, we can find an orthogonal matrix
U ∈Mm(R) such that

UT (AAT )U = D.

Note that columns of U are eigenvectors (orthonormal) of AAT .
Step 2: Find ATA, which is positive semi-definite matrix. We can find an orthogonal matrix V ∈Mn(R)
such that

V T (ATA)V = D′.

Note that columns of V are eigenvectors (orthonormal) of ATA.
Step 3: Define a rectangular diagonal matrix Σ ∈Mm×n such that Σii =

√
λi for i = 1, 2, . . . ,min(m,n),

where λi are the common eigenvalues of ATA and AAT . Note that non-zero diagonal entries σi are
corresponding to non-zero eigenvalues of ATA or AAT .

Step 4: Verify that UΣV T = A.

Remark 9. Let A ∈Mm×n(R) and rank(A) = r. Let UΣV T be a singular value decomposition of A. Let
U1, U2, . . . , Um are columns of U and V1, V2, . . . , Vn are columns of V . Then
1. {U1, U2, . . . , Ur} is an orthonormal basis of column space(A).
2. {Vr+1, Vr+2, . . . , Vn} is an orthonormal basis of null space(A).
3. {V1, V2, . . . , Vr} is an orthonormal basis of Column space of (AT ) or row space of A.
4. {Ur+1, Ur+2, . . . , Un} is an orthonormal basis of null space(AT ).

Proof. Note that AV = UΣ ⇒ AVj = σiUj for j = 1, 2, . . . , r and AVj = 0 for j = r + 1, . . . , n.
Since nullity of A is n − r and Vr+1, Vr+2, . . . , Vn forms an orthonormal basis of N(A). Since σj > 0
and AVj = σjUj, Uj ∈ C(A) for j = 1, 2, . . . , r. Thus {U1, U2, . . . , Ur} is an orthonormal basis of C(A).
Similarly, ATU = V Σ gives that first r columns of V forms a basis of the column space of AT .

Example 10. Find SVD of A =

(
1 0 1 0
0 1 0 1

)
.

Solution: AAT =

(
2 0
0 2

)
and ATA =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

. Then U =

(
1 0
0 1

)
. Note that non-zero eigen-

value of ATA is 2 (as non-zero eigenvalue of AAT is 2) with eigenvectors (0, 1, 0, 1) and (1, 0, 1, 0) and
the remaining eigenvalues of ATA are all zero. The eigenvectors corresponding to 0 are (1, 0,−1, 0) and

(0, 1, 0,−1). Thus V =


1√
2

0 1√
2

0

0 1√
2

0 1√
2

1√
2

0 −1√
2

0

0 1√
2

0 −1√
2

. The rectangular diagonal matrix Σ =

(√
2 0 0 0

0
√

2 0 0

)
.

Therefore, A =

(
1 0
0 1

)(√
2 0 0 0

0
√

2 0 0

)
1√
2

0 1√
2

0

0 1√
2

0 1√
2

1√
2

0 −1√
2

0

0 1√
2

0 −1√
2

 .
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Remark: After finding U , one can find columns of V corresponding to non-zero eigenvalues by using
the relation Vi = 1

σi
ATUi. The other columns of V can be found by finding vectors orthogonal to V1, V2

and to each other.
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