Lecture 22

Positive & Negative Definite Matrices & Singular Value Decomposition(SVD)

Definition 1. Let A be a real symmetric matrix. Then A is said to be positive (negative) definite if all of its eigenvalues are positive (negative).

Definition 2. Let A be a real symmetric matrix. Then A is said to be positive (negative) semi-definite if all of its eigenvalues are non-negative (non-positive).

Remark 3. 1. If A is positive definite, then det(A) > 0 and tr(A) > 0.

2. If A is negative definite matrix of order n, then tr(A) < 0. If n is even, det(A) > 0 and if n is odd det(A) < 0.

3. If A is positive semi-definite, then $det(A) \ge 0$ and $tr(A) \ge 0$.

4. If A is negative semi-definite matrix of order n, then $tr(A) \leq 0$. If n is even, $det(A) \geq 0$ and if n is odd $det(A) \leq 0$.

Proposition 4. Let $A \in M_n(\mathbb{R})$ be a symmetric matrix. Then

1. A is positive definite if and only if $X^T A X > 0$ for all $0 \neq X \in \mathbb{R}^n$.

2. A is negative definite if and only if $X^T A X < 0$ for all $0 \neq X \in \mathbb{R}^n$.

Proof. Let A be positive definite. Since A is a real symmetric matrix, A is orthogonally diagonalizable with positive eigenvalues. Therefore, $A = PDP^T$, where D is a diagonal matrix with entries as eigenvalues of A and P is an orthogonal matrix. Thus, $X^TAX = X^TPDP^TX = (P^TX)^TD(P^TX) = Y^TDY$, where $Y = P^TX \neq 0$. Let $Y = (y_1, y_2, \ldots, y_n)^T$. Then $X^TAX = Y^TDY = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \cdots + \lambda_n y_n^2 > 0$, where λ_i are eigenvalues of A.

Conversely, let $X^T A X > 0$ for all $X \in \mathbb{R}^n$. Let $\lambda \in \mathbb{R}$ be an eigenvalue of A and X_0 be an eigenvector corresponding to λ . Then $X_0^T A X_0 > 0 \Rightarrow \lambda X_0^T X_0 > 0$. Note that $X_0^T X_0 = ||X_0||^2 > 0$ as $X_0 \neq 0$. Therefore, $\lambda > 0$.

Proposition 5. Let $A \in M_n(\mathbb{R})$ be a symmetric matrix. Then

1. A is positive definite if and only if $A = B^T B$ for some invertible matrix B.

2. A is positive semi-definite if and only if $A = B^T B$ for some matrix B.

Proof. Let A be a positive definite matrix. Then A is symmetric, by Spectral theorem, there exists an orthogonal matrix P such that $P^T A P = D$ with $D = diag(\lambda_1, \lambda_2, \ldots, \lambda_n)$, where λ_i 's are eigenvalues of A. Here, $\lambda_i > 0$. Define $\sqrt{D} = diag(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \ldots, \sqrt{\lambda_n})$. Set $B = \sqrt{D}P^T$, then B is invertible and $B^T B = A$.

Conversely,
$$X^T A X = X^T B^T B X = (BX)^T (BX) = ||BX||^2$$
. Therefore, for $X \neq 0, X^T A X > 0$. \Box

Let $A \in M_n(\mathbb{R})$. The leading principal minor D_k of A of order $k, 1 \leq k \leq n$, is the determinant of the matrix obtained from A by deleting last n - k rows and last n - k columns of A.

Proposition 6. Let $A \in M_n(\mathbb{R})$ be a symmetric matrix. Then

- 1. A is positive definite if and only if $D_k > 0$ for $1 \le k \le n$.
- 2. A is negative definite if and only if $(-1)^k D_k > 0$ for $1 \le k \le n$.
- 3. A is positive semi-definite, then $D_k \ge 0$ for $1 \le k \le n$. Show that the converse need not be true.
- 4. A is negative semi-definite, then $(-1)^k D_k \ge 0$ for $1 \le k \le n$. Show that the converse need not be true.

Proof. The prove for this result has been omitted. To see that converse is not true in case of (3),

take $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1/2 \end{pmatrix}$. Then $D_1 = 1$, $D_2 = \det \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = 0$ and $D_3 = \det(A) = 0$. The matrix is

symmetric and $D_k \ge 0$ for k = 1, 2, 3. But $X^T A X = -2$ for $X = (1, 1, -2)^T$. Therefore, A is not positive semi-definite.

Exercise 1. Which of the following matrices is positive definite/negative definite/positive semi-definite/ negative semi-definite.

Singular-Value Decomposition

We know that every matrix is not diagonalizable and diagonalizability can be discussed only for square matrices. Here we discuss a decomposition of an $m \times n$ matrix which coincide with a known decomposition of a positive semi-definite matrix.

Let $A \in M_{m \times n}$. Then a decomposition of the form

$$A = U\Sigma V^T,$$

where $U \in M_m(\mathbb{R})$ and $V \in M_n(\mathbb{R})$ are orthogonal, and Σ is a rectangular diagonal matrix with nonnegative real diagonal entries, is called Singular-Value Decomposition of A. The non-zero diagonal entries of Σ are called singular values of A.

When A is a positive semi-definite matrix, then SVD is nothing but $A = PDP^{T}$ for some orthogonal matrix P.

Theorem 7. Let $A \in M_{m \times n}(\mathbb{R})$. Then A has a singular value decomposition.

Proposition 8. Let $A \in M_{m \times n}(\mathbb{R})$. Then

1. $A^T A$ is positive semi-definite.

2. AA^T is positive semi-definite.

3. If $m \ge n$, then $P^T(A^T A)P = D$ and $P'^T(AA^T)P' = D'$ for some orthogonal matrices $P \in M_n(\mathbb{R})$ and $P' \in M_m(\mathbb{R})$ with

$$D' = \begin{pmatrix} D & 0_{m \times m-n} \\ 0_{m-n \times m} & 0_{m-n \times m-n} \end{pmatrix}.$$

Proof. Note that $A^T A$ and AA^T are symmetric matrices. We claim that $X^T A X \ge 0$ for every $X \ne 0$. For $X \neq 0, X^T A A^T X = (A^T X)^T (A^T X) = ||A^T X||^2 \ge 0$. Therefore, $A A^T$ is positive semi-definite. Similarly for $A^T A$. Since the $A^T A$ and $A A^T$ are symmetric, they are orthogonally diagonalizable. Therefore, $P^{T}(A^{T}A)P = D$ and $P'^{T}(AA^{T})P = D'$ for some orthogonal matrices $P \in M_{m}(\mathbb{R})$ and $P' \in M_{n}(\mathbb{R})$. Recall that $p_{AA^T}x = x^{m-n}p_{A^TA}(x)$, where $p_{AA^T}(x)$ and p_{A^TA} are the characteristic polynomial of AA^T and A^TA respectively. Hence, $D' = \begin{pmatrix} D & 0_{m \times m-n} \\ 0_{m-n \times m} & 0_{m-n \times m-n} \end{pmatrix}$.

Method to find SVD of A

Step 1: Find AA^T , which is positive semi-definite matrix. Therefore, we can find an orthogonal matrix $U \in M_m(\mathbb{R})$ such that

$$U^T(AA^T)U = D.$$

Note that columns of U are eigenvectors (orthonormal) of AA^T . Step 2: Find A^TA , which is positive semi-definite matrix. We can find an orthogonal matrix $V \in M_n(\mathbb{R})$ such that

$$V^T(A^T A)V = D'$$

Note that columns of V are eigenvectors (orthonormal) of $A^T A$.

Step 3: Define a rectangular diagonal matrix $\Sigma \in M_{m \times n}$ such that $\Sigma_{ii} = \sqrt{\lambda_i}$ for $i = 1, 2, ..., \min(m, n)$, where λ_i are the common eigenvalues of $A^T A$ and $A A^T$. Note that non-zero diagonal entries σ_i are corresponding to non-zero eigenvalues of $A^T A$ or $A A^T$.

Step 4: Verify that $U\Sigma V^T = A$.

Remark 9. Let $A \in M_{m \times n}(\mathbb{R})$ and rank(A) = r. Let $U\Sigma V^T$ be a singular value decomposition of A. Let U_1, U_2, \ldots, U_m are columns of U and V_1, V_2, \ldots, V_n are columns of V. Then

- 1. $\{U_1, U_2, \ldots, U_r\}$ is an orthonormal basis of column space(A).
- 2. $\{V_{r+1}, V_{r+2}, \ldots, V_n\}$ is an orthonormal basis of null space(A).
- 3. $\{V_1, V_2, \ldots, V_r\}$ is an orthonormal basis of Column space of (A^T) or row space of A.
- 4. $\{U_{r+1}, U_{r+2}, \dots, U_n\}$ is an orthonormal basis of null space(A^T).

Proof. Note that $AV = U\Sigma \Rightarrow AV_j = \sigma_i U_j$ for j = 1, 2, ..., r and $AV_j = 0$ for j = r + 1, ..., n. Since nullity of A is n - r and $V_{r+1}, V_{r+2}, ..., V_n$ forms an orthonormal basis of N(A). Since $\sigma_j > 0$ and $AV_j = \sigma_j U_j, U_j \in C(A)$ for j = 1, 2, ..., r. Thus $\{U_1, U_2, ..., U_r\}$ is an orthonormal basis of C(A). Similarly, $A^T U = V\Sigma$ gives that first r columns of V forms a basis of the column space of A^T . \Box

Example 10. Find SVD of $A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$.

Solution:
$$AA^T = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
 and $A^TA = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$. Then $U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Note that non-zero eigen-

value of $A^T A$ is 2 (as non-zero eigenvalue of AA^T is 2) with eigenvectors (0, 1, 0, 1) and (1, 0, 1, 0) and the remaining eigenvalues of $A^T A$ are all zero. The eigenvectors corresponding to 0 are (1, 0, -1, 0) and

$$(0,1,0,-1). \text{ Thus } V = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \end{pmatrix}. \text{ The rectangular diagonal matrix } \Sigma = \begin{pmatrix} \sqrt{2} & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 \end{pmatrix}.$$

Therefore, $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \end{pmatrix}.$

Remark: After finding U, one can find columns of V corresponding to non-zero eigenvalues by using the relation $V_i = \frac{1}{\sigma_i} A^T U_i$. The other columns of V can be found by finding vectors orthogonal to V_1, V_2 and to each other.