Lecture 22
Positive & Negative Definite Matrices & Singular Value Decomposition(SVD)

Definition 1. Let A be a real symmetric matriz. Then A is said to be positive (negative) definite if all
of its eigenvalues are positive (negative).

Definition 2. Let A be a real symmetric matriz. Then A is said to be positive (negative) semi-definite
if all of its eigenvalues are non-negative (non-positive).

Remark 3. 1. If A is positive definite, then det(A) > 0 and tr(A) > 0.

2. If A is negative definite matriz of order n, then tr(A) < 0. If n is even, det(A) > 0 and if n is odd
det(A) < 0.

3. If A is positive semi-definite, then det(A) > 0 and tr(A) > 0.

4. If A is negative semi-definite matriz of order n, then tr(A) < 0. Ifn is even, det(A) > 0 and if n is
odd det(A) < 0.

Proposition 4. Let A € M, (R) be a symmetric matriz. Then
1. A is positive definite if and only if XTAX > 0 for all 0 # X € R".
2. A is negative definite if and only if XTAX < 0 for all 0 # X € R".

Proof. Let A be positive definite. Since A is a real symmetric matrix, A is orthogonally diagonalizable
with positive eigenvalues. Therefore, A = PDPT, where D is a diagonal matrix with entries as eigenvalues
of A and P is an orthogonal matrix. Thus, XTAX = XTPDPTX = (PTX)'D(PTX) = YTDY, where
Y =P'X #£0. Let Y = (y1,¥2,---»Yn)?. Then XTAX =YTDY = \jy? + Xay3 + - + A\y2 > 0, where
A; are eigenvalues of A.

Conversely, let XTAX > 0 for all X € R™. Let A € R be an eigenvalue of A and X, be an eigenvector
corresponding to A. Then XIAXy, > 0 = AXI Xy > 0. Note that XI' Xy = || Xo]|*> > 0 as Xy # 0.
Therefore, A > 0. []

Proposition 5. Let A € M, (R) be a symmetric matriz. Then
1. A is positive definite if and only if A= BT B for some invertible matriz B.
2. A is positive semi-definite if and only if A = BT B for some matriz B.

Proof. Let A be a positive definite matrix. Then A is symmetric, by Spectral theorem, there exists an
orthogonal matrix P such that PTAP = D with D = diag(\i, Xs, ..., \,), where \;’s are eigenvalues
of A. Here, \; > 0. Define v'D = diag(v/ 21, VA2, ..., vV/An). Set B = v/DPT, then B is invertible and
BTB = A.

Conversely, XTAX = XTBTBX = (BX)T(BX) = |BX|]?. Therefore, for X # 0, XTAX >0. O

Let A € M,(R). The leading principal minor Dy, of A of order k, 1 < k < n, is the determinant of the
matrix obtained from A by deleting last n — k rows and last n — k columns of A.

Proposition 6. Let A € M, (R) be a symmetric matriz. Then

1. A is positive definite if and only if Dy, >0 for 1 <k <n.

2. A is negative definite if and only if (—=1)*Dy, > 0 for 1 < k < n.

3. A is positive semi-definite, then Dy > 0 for 1 < k < n. Show that the converse need not be true.

4. A is negative semi-definite, then (—1)*Dy > 0 for 1 < k < n. Show that the converse need not be true.



Proof. The prove for this result has been omitted. To see that converse is not true in case of (3),
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take A= |1 1 1 |. Then D; = 1, Dy = det G 1) = 0 and D3 = det(A) = 0. The matrix is
11 1/2
symmetric and Dy, > 0 for k = 1,2,3. But XTAX = —2 for X = (1,1, —2)T. Therefore, A is not positive
semi-definite. O]

Exercise 1. Which of the following matrices is positive definite/negative definite/positive semi-definite/
negative semi-definite.
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Singular-Value Decomposition

We know that every matrix is not diagonalizable and diagonalizability can be discussed only for square
matrices. Here we discuss a decomposition of an m xn matrix which coincide with a known decomposition
of a positive semi-definite matrix.

Let A € M,,«,. Then a decomposition of the form
A=UxVT,

where U € M,,(R) and V' € M, (R) are orthogonal, and ¥ is a rectangular diagonal matrix with non-
negative real diagonal entries, is called Singular-Value Decomposition of A. The non-zero diagonal entries
of ¥ are called singular values of A.

When A is a positive semi-definite matrix, then SVD is nothing but A = PDP?T for some orthogonal
matrix P.

Theorem 7. Let A € M,»n(R). Then A has a singular value decomposition.

Proposition 8. Let A € M,,«,(R). Then

1. AT A is positive semi-definite.

2. AAT is positive semi-definite.

3. If m > n, then PT(ATA)P = D and P (AAT)P" = D' for some orthogonal matrices P € M,(R) and

P' € My, (R) with
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Proof. Note that AT A and AAT are symmetric matrices. We claim that X7 AX > 0 for every X # 0. For
X #£0, XTAATX = (ATX)T(ATX) = ||JATX||> > 0. Therefore, AA” is positive semi-definite. Similarly
for ATA. Since the ATA and AAT are symmetric, they are orthogonally diagonalizable. Therefore,
PT(ATA)P = D and PT(AAT)P = D' for some orthogonal matrices P € M,,(R) and P’ € M,(R).
Recall that pyarx = 2™ "par4(x), where pyar(z) and pyry are the characteristic polynomial of AAT
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and AT A respectively. Hence, D’ =



Method to find SVD of A
Step 1: Find AA”, which is positive semi-definite matrix. Therefore, we can find an orthogonal matrix
U € M,,(R) such that

UT(AATU = D.

Note that columns of U are eigenvectors (orthonormal) of AAT.
Step 2: Find AT A, which is positive semi-definite matrix. We can find an orthogonal matrix V € M, (R)
such that

VI(ATA)V = D',
Note that columns of V' are eigenvectors (orthonormal) of AT A.
Step 3: Define a rectangular diagonal matrix ¥ € M,,,, such that ¥;; = /A fori = 1,2, ..., min(m,n),
where \; are the common eigenvalues of ATA and AAT. Note that non-zero diagonal entries o; are
corresponding to non-zero eigenvalues of AT A or AAT.

Step 4: Verify that USVT = A.

Remark 9. Let A € M,,»n,(R) and rank(A) =r. Let USVT be a singular value decomposition of A. Let
Uy, Us, ..., U, are columns of U and V1, Vs, ..., V, are columns of V. Then

1. {Uy, Uy, ..., U.} is an orthonormal basis of column space(A).

2. {Vi41, Viga, ..., Vi } is an orthonormal basis of null space(A).

3. {Vi, Vo, ..., V.} is an orthonormal basis of Column space of (A1) or row space of A.

4. {Upi1,Upia, ..., Uy} is an orthonormal basis of null space( AT).

Proof. Note that AV = UX = AV; = o;U; for j = 1,2,...,r and AV; = 0 for j = r+1,...,n.
Since nullity of A is n —r and V44, V4o, ..., V,, forms an orthonormal basis of N(A). Since o; > 0
and AV; = o,;U;, U; € C(A) for j =1,2,...,r. Thus {U;,Us,...,U,} is an orthonormal basis of C'(A).
Similarly, ATU = V¥ gives that first r columns of V forms a basis of the column space of AT, m

Example 10. Find SVD of A = (1 01 0) .
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Solution: AAT = <(2) g) and ATA = (1) (1) (1) é . Then U = (é (1)) Note that non-zero eigen-
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value of ATA is 2 (as non-zero eigenvalue of AAT is 2) with eigenvectors (0,1,0,1) and (1,0,1,0) and
the remaining eigenvalues of AT A are all zero. The eigenvectors corresponding to 0 are (1,0, —1,0) and

(0,1,0,—1). Thus V = v2 0 0 O).
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Remark: After finding U, one can find columns of V' corresponding to non-zero eigenvalues by using
the relation V; = %ATUi. The other columns of V' can be found by finding vectors orthogonal to Vi, V5
and to each other.



