Lecture 21

Decomposition of a Matrix in Terms of Projections

Here we discuss a special kind of linear maps (matrices), called projection and their properties. Further, we see that every diagonalizable matrix can be decomposed into projection matrices.

Definition 1. Let V be a vector space over \mathbb{F}. A linear map $E: V \rightarrow V$ is called a projection if $E^{2}=E$. A matrix M is called a projection matrix if $M^{2}=M$, i.e., M is idempotent.

Theorem 2. Let $E: V \rightarrow V$ be a projection. Let R be the range of E and N be its null space. Then $V=R \oplus N$.

Proof: It is easy to see that $R \cap N=\{0\}$. For $v \in V$, let $v=v-E v+E v \in N+R$.
Theorem 3. Let R and N be subspaces of a vector space V such that $V=R \oplus N$. Then there is a projection map E on V such that the range of E is R and the null space of E is N.

Proof: Define $E: V \rightarrow V$ as $E(r+n)=r$.
Definition 4. A vector space V is said to be a direct sum of k subspaces $W_{1}, W_{2}, \ldots, W_{k}$ if $V=W_{1}+$ $W_{2}+\cdots+W_{k}$ and $W_{i} \cap\left(W_{1}+W_{2}+\cdots+W_{i-1}+W_{i+1}+\cdots+W_{k}\right)=\{0\}$ for each i.

Theorem 5. If $V=W_{1} \oplus W_{2} \ldots \oplus W_{k}$, then there exist k linear maps E_{1}, \ldots, E_{k} on V such that:

1. Each E_{i} is projection,
2. $E_{i} E_{j}=0$ for all $i \neq j$,
3. $E_{1}+\ldots+E_{k}=I$,
4. the range of E_{i} is W_{i}.

Proof. Let $v \in V$. Then $v=w_{1}+w_{2}+\cdots+w_{k}$, where $w_{i} \in W_{i}$. Define $E_{i}: V \rightarrow V$ as $E_{i}(v)=$ $E_{i}\left(w_{1}+\ldots+w_{k}\right)=w_{i}$ for all i. Then E_{i} is linear with $E_{i}^{2}(v)=v$ for all $v \in V$. Also $E_{i} E_{j}=0$ for all $i \neq j$ and $E_{1}+\ldots+E_{k}=I$. By definition of E_{i}, range of E_{i} is W_{i}.

Lemma 6. Let $A \in M_{n}(\mathbb{F})$. The matrix A is diagonalizable if and only if $\mathbb{F}^{n}=E_{\lambda_{1}} \oplus \cdots \oplus E_{\lambda_{k}}$, where $\lambda_{i} \in \mathbb{F}$ and $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$ and $E_{\lambda_{i}}$ is the eigenspace of λ_{i}.

Proof. Let A be diagonalizable. Recall that if B_{i} is a basis of the eigenspace $E_{\lambda_{i}}$, then $\cup_{i=1}^{k} B_{i}$ is a basis of $V=\mathbb{F}^{n}$. Thus $V=E_{\lambda_{1}}+\cdots+E_{\lambda_{k}}$. Let $v \in E_{\lambda_{i}} \cap\left(E_{\lambda_{1}}+E_{\lambda_{2}}+\cdots+E_{\lambda_{i-1}}+E_{\lambda_{i+1}}+\cdots+E_{\lambda_{k}}\right)$. Then $A v=\lambda_{i} v$ and $v=v_{1}+v_{2}+\cdots+v_{i-1}+v_{i+1}+\cdots+v_{k}$, where $v_{j} \in E_{\lambda_{j}}$ and $j \neq i$. Then $A v=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{i-1} v_{i-1}+\lambda_{i+1} v_{i+1}+\cdots+\lambda_{k} v_{k}$ so that $\left(\lambda_{i}-\lambda_{1}\right) v_{1}+\cdots+\left(\lambda_{i}-\lambda_{i-1}\right) v_{i-1}+$ $\left(\lambda_{i}-\lambda_{i+1}\right) v_{i+1}+\cdots+\left(\lambda_{i}-\lambda_{k}\right) v_{k}=0$. If v is non-zero, not all v_{i} are zero. Note that if $v_{j} \neq 0$, it is an eigenvector corresponding to λ_{j}, but eigenvectors corresponding to distinct eigenvalues are independent, hence $\lambda_{i}=\lambda_{j}$ for some $j \neq i$, which is a contradiction.

Theorem 7. Let A be a diagonalizable matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. Then A can be decomposed as a linear sum of idempotent (projection) matrices E_{1}, \ldots, E_{k} given by $A=\lambda_{1} E_{1}+\ldots+\lambda_{k} E_{k}$.

Proof: The matrix A is diagonalizable so that the minimal polynomial of A is $\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{k}\right)$. Define

$$
E_{j}=\frac{\left.\left(A-\lambda_{1} I\right) \ldots\left(A-\lambda_{j-1} I\right)\left(A-\lambda_{j+1} I\right) \ldots\left(A-\lambda_{k} I\right)\right)}{\left(\lambda_{j}-\lambda_{1}\right) \ldots\left(\lambda_{j}-\lambda_{j-1}\right)\left(\lambda_{j}-\lambda_{j+1}\right) \ldots\left(\lambda_{j}-\lambda_{k}\right)} .
$$

Let $v \in V$, then $v=v_{1}+v_{2}+\cdots+v_{k}$, where $v_{i} \in E_{\lambda_{i}}$. Let $v_{i} \in E_{\lambda_{i}}$, then $E_{j}\left(v_{i}\right)=0$ if $i \neq j$ and $E_{j}\left(v_{j}\right)=v_{j}$ so that $E_{j}(v)=E_{j}\left(v_{1}+v_{2}+\cdots+v_{k}\right)=E_{j}\left(v_{1}\right)+E_{j}\left(v_{2}\right)+\cdots+E_{j}\left(v_{k}\right)=v_{j}$. Thus E_{j} is a projection matrix. One can see that (i) $E_{i}^{2}=E_{i}$, (ii) $E_{i} E_{j}=0$ and $I=E_{1}+\ldots+E_{k}$ (left to the reader to verify). Now $I=E_{1}+E_{2}+\cdots+E_{k}$ so that $A=A E_{1}+A E_{2}+\cdots+A E_{k}$. Then $A v=A\left(v_{1}+v_{2}+\cdots+v_{k}\right)=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\lambda_{k} v_{k}=\lambda_{1} E_{1}(v)+\lambda_{2} E_{2}(v)+\cdots+\lambda_{k} E_{k}(v)$ for all $v \in V$. Therefore, $A=\lambda_{1} E_{1}+\lambda_{2} E_{2}+\cdots+\lambda_{k} E_{k}$.

Example: Check the diagonalizability of the given matrix $\left(\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right)$. If diagonalizable, write the matrix as linear sum of projection matrices.

Solution: The characteristic polynomial $p(x)=(x-1)(x-2)^{2}$. Let $\lambda_{1}=1$ and $\lambda_{2}=2$. Then $G M(1)=$ and eigenvectors corresponding to 2 are $v_{2}=(2,1,0)$ and $(2,0,1)$ so that $G M(2)=2$. Hence, the matrix is diagonalizable. Then as per the above theory, $E_{1}=(2 I-A)$ and $E_{2}=(A-I)$ and hence, $A=1(2 I-A)+2(A-I)$. Verify yourself that $E_{i}^{2}=E_{i}$ for $i=1,2$.

