Lecture 20 Spectral Theorem

Definition 1 (Orthogonal Matrix). A real square matrix is called orthogonal if $AA^T = I = A^T A$.

Definition 2 (Unitary Matrix). A complex square matrix is called unitary if $AA^* = I = A^*A$, where A^* is the conjugate transpose of A, that is, $A^* = \overline{A}^T$.

Theorem 3. Let A be a unitary (real orthogonal) matrix. Then

(i) rows of A forms an orthonormal set;

(ii) columns of A forms an orthonormal set.

Remark 4. 1. P is orthogonal if and only if P^T is orthogonal.

2. P is unitary if and only if P^* is unitary.

3. An orthogonal matrix (unitary) is invertible and its inverse is orthogonal (unitary).

4. Product of two orthogonal (unitary) matrices is orthogonal (unitary).

Theorem 5. The eigenvalues of a unitary matrix (an orthogonal matrix) has absolute value 1.

Proof: Let λ be an eigenvalue of a unitary matrix A. Then there exists a non-zero vector X such that $AX = \lambda X$. Thus, $(AX)^* = \overline{\lambda}X^* \Rightarrow (AX)^*(AX) = \overline{\lambda}X^*(\lambda X) \Rightarrow X^*A^*AX = \lambda\overline{\lambda}X^*X$. But $A^*A = I$, $(1 - |\lambda|^2)X^*X = 0$, *i.e.*, $|\lambda| = 1$.

Definition 6. A complex square matrix A is called a Hermitian matrix if $A = A^*$, where A^* is the conjugate transpose of A, that is, $A^* = \overline{A}^T$. A complex square matrix is called skew-Hermitian if $A = -A^*$.

Theorem 7. 1. The eigenvalues of a Hermitian matrix (real symmetric matrix) are real. 2. The eigenvalues of a skew-Hermitian matrix (real skew-symmetric matrix) are either purely imaginary or zero.

Proof: Let λ be an eigenvalue of a Hermitian matrix A. Then there exists a non-zero vector $X \in \mathbb{C}^n$ such that $AX = \lambda X$, multiplying both side by X^* , we get $X^*AX = \lambda X^*X$. Taking conjugate transpose both sides, we get $(X^*AX)^* = (\lambda X^*X)^* \Rightarrow X^*AX = \overline{\lambda}X^*X$. Thus we see that $\lambda X^*X = \overline{\lambda}X^*X$. Since $X \neq 0, X^*X = ||X||^2 \neq 0$ so that $\lambda = \overline{\lambda}$. For skew-Hermitian matrix, proceed in a similar way.

Theorem 8. Let A be a real symmetric matrix. Then eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

Proof: Let $\lambda_1 \neq \lambda_2$ be two eigenvalues of A and v_1 and v_2 be corresponding eigenvectors respectively. Then $Av_1 = \lambda_1 v_1 \Rightarrow v_1^T A^T = \lambda_1 v_1^T \Rightarrow v_1^T A^T v_2 = \lambda_1 v_1^T v_2$. Also $(Av_1)^T v_2 = v_1^T A^T v_2 = v_1^T A v_2 = \lambda_2 v_1^T v_2$. Hence, $(\lambda_1 - \lambda_2) v_1^T v_2 = 0$, and $\lambda_1 \neq \lambda_2$ so that $v_1^T v_2 = 0 = \langle v_1, v_2 \rangle \Rightarrow v_1 \perp v_2$.

Theorem 9. [Spectral Theorem for a real symmetric matrix] Let A be a real symmetric matrix. Then there exists an orthogonal matrix P such that $P^T A P = D$, where D is a diagonal matrix. In other words, a real symmetric matrix is orthogonally diagonalizable.

Proof: The proof is by induction on order of the matrix. The result holds for n = 1. Suppose the result holds for $(n-1) \times (n-1)$ symmetric matrix. Let A be a symmetric matrix of order $n \times n$. Note

that A has real eigenvalues. Let $\lambda \in \mathbb{R}$ be one of the eigenvalue and $0 \neq X \in \mathbb{R}^n$ be a corresponding eigenvector with norm 1, then $AX = \lambda X$. Construct an orthonormal basis (by Gram-Schmidt process) $B = \{v_1, v_2, v_3, \ldots, v_n\}$, where $v_1 = X$ and $v_i \in \mathbb{R}^n$. Construct a matrix P such that the *i*-th column of P is v_i . Then P is an orthogonal matrix.

Note that the matrix $P^{-1}AP$ is symmetric and the first column of $P^{-1}AP$ is given by $P^{-1}AP(e_1)$, thus $P^{-1}A(Pe_1) = P^{-1}AX = P^{-1}\lambda X = \lambda e_1$. Therefore, the matrix can be represented as $P^{-1}AP = \begin{bmatrix} \lambda & 0 \\ 0 & C \end{bmatrix}$, where C is a symmetric matrix of order $(n-1) \times (n-1)$. Hence, by induction hypothesis, C is similar to a diagonal matrix, say D, *i.e.*, there is an orthogonal matrix Q such that $Q^{-1}CQ = Q^TCQ = D$. Let $R = P \begin{bmatrix} 1 & 0 \\ 0 & Q \end{bmatrix}$. We claim that R is orthogonal and R^TAR is diagonal.

$$R^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & Q^{-1} \end{bmatrix} P^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & Q^T \end{bmatrix} P^T = R^T, \text{ and}$$
$$R^T A R = \begin{bmatrix} 1 & 0 \\ 0 & Q^T \end{bmatrix} P^T A P \begin{bmatrix} 1 & 0 \\ 0 & Q \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & Q^T \end{bmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & C \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & Q \end{bmatrix} = \begin{bmatrix} \lambda & 0 \\ 0 & Q^T CQ \end{bmatrix} = \begin{bmatrix} \lambda & 0 \\ 0 & D \end{bmatrix}.$$

Thus R is an orthogonal matrix such that $R^T A R$ is diagonal. Therefore, A is orthogonally diagonalizable.

Theorem 10. Converse of the above theorem is also true, *i.e.*, if $A \in M_n(\mathbb{R})$ is orthogonally diagonalizable, then A is symmetric.

Proof: Let A be a matrix which is orthogonally diagonalizable. Then there is an orthogonal matrix P s.t. $P^{-1}AP = P^{T}AP = D$, equivalently, $A = PDP^{-1} = PDP^{T}$. This shows that $A^{T} = A$. Hence proved.

Example: Find an orthogonal matrix P and a diagonal matrix D such that $P^T A P = D$, where

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}.$$

The characteristic polynomial is $(x + 1)^2(x - 5)$. The eigenvalues are 5, -1, -1. An eigenvector corresponding to $\lambda = 5$ is $v_1 = (1, 1, 1)$. The two independent eigenvectors corresponding to $\lambda = -1$ are $v_2 = (-1, 0, 1)$ and $v_3 = (-1, 1, 0)$. Thus, $B = \{v_1, v_2, v_3\}$ forms a basis of \mathbb{R}^3 . To find an orthonormal basis, we apply Gram-Schmidt process on B. Thus

$$\begin{split} w_1 &= v_1, \ ||w_1|| = \sqrt{3}, \\ w_2 &= v_2 \ (\text{eigen vectors corresponding to distinct eigen values are orthogonal}), \ ||w_2|| = \sqrt{2}, \\ w_3 &= v_3 - \frac{\langle v_3, w_1 \rangle w_1}{||w_1||^2} - \frac{\langle v_3, w_2 \rangle w_2}{||w_2||^2} = (-1, 1, 0) - 0(1, 1, 1) - \frac{1(-1, 0, 1)}{2} = (-\frac{1}{2}, 1, -\frac{1}{2}), \ ||w_3|| = \frac{\sqrt{6}}{2} \\ \text{Thus,} \ P &= \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{\sqrt{6}}{3} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \end{bmatrix} \text{ and } D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}. \text{ Verify yourself that } P^T A P = D. \end{split}$$