
Lecture 20
Spectral Theorem

Definition 1 (Orthogonal Matrix). A real square matrix is called orthogonal if AAT = I = ATA.

Definition 2 (Unitary Matrix). A complex square matrix is called unitary if AA∗ = I = A∗A, where A∗

is the conjugate transpose of A, that is, A∗ = A
T
.

Theorem 3. Let A be a unitary (real orthogonal) matrix. Then
(i) rows of A forms an orthonormal set;
(ii) columns of A forms an orthonormal set.

Remark 4. 1. P is orthogonal if and only if P T is orthogonal.
2. P is unitary if and only if P ∗ is unitary.
3. An orthogonal matrix (unitary) is invertible and its inverse is orthogonal (unitary).
4. Product of two orthogonal (unitary) matrices is orthogonal (unitary).

Theorem 5. The eigenvalues of a unitary matrix (an orthogonal matrix) has absolute value 1.

Proof: Let λ be an eigenvalue of a unitary matrix A. Then there exists a non-zero vector X such that
AX = λX. Thus, (AX)∗ = λ̄X∗ ⇒ (AX)∗(AX) = λ̄X∗(λX) ⇒ X∗A∗AX = λλ̄X∗X. But A∗A = I,
(1− |λ|2)X∗X = 0, i.e., |λ| = 1.

Definition 6. A complex square matrix A is called a Hermitian matrix if A = A∗, where A∗ is the

conjugate transpose of A, that is, A∗ = A
T
. A complex square matrix is called skew-Hermitian if A = −A∗.

Theorem 7. 1. The eigenvalues of a Hermitian matrix (real symmetric matrix) are real.
2. The eigenvalues of a skew-Hermitian matrix (real skew-symmetric matrix) are either purely imaginary
or zero.

Proof: Let λ be an eigenvalue of a Hermitian matrix A. Then there exists a non-zero vector X ∈ Cn

such that AX = λX, multiplying both side by X∗, we get X∗AX = λX∗X. Taking conjugate transpose
both sides, we get (X∗AX)∗ = (λX∗X)∗ ⇒ X∗AX = λ̄X∗X. Thus we see that λX∗X = λ̄X∗X. Since
X 6= 0, X∗X = ||X||2 6= 0 so that λ = λ̄. For skew-Hermitian matrix, proceed in a similar way.

Theorem 8. Let A be a real symmetric matrix. Then eigenvectors of A corresponding to distinct
eigenvalues are orthogonal.

Proof: Let λ1 6= λ2 be two eigenvalues of A and v1 and v2 be corresponding eigenvectors respectively.
Then Av1 = λ1v1⇒ vT1 A

T = λ1v
T
1 ⇒ vT1 A

Tv2 = λ1v
T
1 v2. Also (Av1)

Tv2 = vT1 A
Tv2 = vT1 Av2 = λ2v

T
1 v2.

Hence, (λ1 − λ2)vT1 v2 = 0, and λ1 6= λ2 so that vT1 v2 = 0 = 〈v1, v2〉 ⇒ v1 ⊥ v2.

Theorem 9. [Spectral Theorem for a real symmetric matrix] Let A be a real symmetric matrix.
Then there exists an orthogonal matrix P such that P TAP = D, where D is a diagonal matrix. In other
words, a real symmetric matrix is orthogonally diagonalizable.

Proof: The proof is by induction on order of the matrix. The result holds for n = 1. Suppose the
result holds for (n− 1)× (n− 1) symmetric matrix. Let A be a symmetric matrix of order n× n. Note
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that A has real eigenvalues. Let λ ∈ R be one of the eigenvalue and 0 6= X ∈ Rn be a corresponding
eigenvector with norm 1, then AX = λX. Construct an orthonormal basis (by Gram-Schmidt process)
B = {v1, v2, v3, . . . , vn}, where v1 = X and vi ∈ Rn. Construct a matrix P such that the i-th column of
P is vi. Then P is an orthogonal matrix.

Note that the matrix P−1AP is symmetric and the first column of P−1AP is given by P−1AP (e1), thus

P−1A(Pe1) = P−1AX = P−1λX = λe1. Therefore, the matrix can be represented as P−1AP =

[
λ 0
0 C

]
,

where C is a symmetric matrix of order (n− 1)× (n− 1). Hence, by induction hypothesis, C is similar
to a diagonal matrix, say D, i.e., there is an orthogonal matrix Q such that Q−1CQ = QTCQ = D. Let

R = P

[
1 0
0 Q

]
. We claim that R is orthogonal and RTAR is diagonal.

R−1 =

[
1 0
0 Q−1

]
P−1 =

[
1 0
0 QT

]
P T = RT , and

RTAR =

[
1 0
0 QT

]
P TAP

[
1 0
0 Q

]
=

[
1 0
0 QT

] [
λ 0
0 C

] [
1 0
0 Q

]
=

[
λ 0
0 QTCQ

]
=

[
λ 0
0 D

]
.

Thus R is an orthogonal matrix such that RTAR is diagonal. Therefore, A is orthogonally diagonalizable.
�

Theorem 10. Converse of the above theorem is also true, i.e., if A ∈Mn(R) is orthogonally diagonaliz-
able, then A is symmetric.

Proof: Let A be a matrix which is orthogonally diagonalizable. Then there is an orthogonal matrix P
s.t. P−1AP = P TAP = D, equivalentely, A = PDP−1 = PDP T . This shows that AT = A. Hence
proved.

Example : Find an orthogonal matrix P and a diagonal matrix D such that P TAP = D, where

A =

1 2 2
2 1 2
2 2 1

 .
The characteristic polynomial is (x + 1)2(x − 5). The eigenvalues are 5,−1,−1. An eigenvector cor-

responding to λ = 5 is v1 = (1, 1, 1). The two independent eigenvectors corresponding to λ = −1 are
v2 = (−1, 0, 1) and v3 = (−1, 1, 0). Thus, B = {v1, v2, v3} forms a basis of R3. To find an orthonormal
basis, we apply Gram-Schmidt process on B. Thus

w1 = v1, ||w1|| =
√

3,
w2 = v2 (eigen vectors corresponding to distinct eigen values are orthogonal), ||w2|| =

√
2,

w3 = v3 − 〈v3,w1〉w1

||w1||2 −
〈v3,w2〉w2

||w2||2 = (−1, 1, 0)− 0(1, 1, 1)− 1(−1,0,1)
2

= (−1
2
, 1,−1

2
), ||w3|| =

√
6
2

Thus, P =


1√
3
− 1√

2
− 1√

6
1√
3

0
√
6
3

1√
3
− 1√

3
− 1√

6

 and D =

5 0 0
0 −1 0
0 0 −1

 . Verify yourself that P TAP = D.
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