Lecture 20

Spectral Theorem

Definition 1 (Orthogonal Matrix). A real square matrix is called orthogonal if $A A^{T}=I=A^{T} A$.
Definition 2 (Unitary Matrix). A complex square matrix is called unitary if $A A^{*}=I=A^{*} A$, where A^{*} is the conjugate transpose of A, that is, $A^{*}=\bar{A}^{T}$.

Theorem 3. Let A be a unitary (real orthogonal) matrix. Then
(i) rows of A forms an orthonormal set;
(ii) columns of A forms an orthonormal set.

Remark 4. 1. P is orthogonal if and only if P^{T} is orthogonal.
2. P is unitary if and only if P^{*} is unitary.
3. An orthogonal matrix (unitary) is invertible and its inverse is orthogonal (unitary).
4. Product of two orthogonal (unitary) matrices is orthogonal (unitary).

Theorem 5. The eigenvalues of a unitary matrix (an orthogonal matrix) has absolute value 1.

Proof: Let λ be an eigenvalue of a unitary matrix A. Then there exists a non-zero vector X such that $A X=\lambda X$. Thus, $(A X)^{*}=\bar{\lambda} X^{*} \Rightarrow(A X)^{*}(A X)=\bar{\lambda} X^{*}(\lambda X) \Rightarrow X^{*} A^{*} A X=\lambda \bar{\lambda} X^{*} X$. But $A^{*} A=I$, $\left(1-|\lambda|^{2}\right) X^{*} X=0$, i.e., $|\lambda|=1$.

Definition 6. A complex square matrix A is called a Hermitian matrix if $A=A^{*}$, where A^{*} is the conjugate transpose of A, that is, $A^{*}=\bar{A}^{T}$. A complex square matrix is called skew-Hermitian if $A=-A^{*}$.

Theorem 7. 1. The eigenvalues of a Hermitian matrix (real symmetric matrix) are real.
2. The eigenvalues of a skew-Hermitian matrix (real skew-symmetric matrix) are either purely imaginary or zero.

Proof: Let λ be an eigenvalue of a Hermitian matrix A. Then there exists a non-zero vector $X \in \mathbb{C}^{n}$ such that $A X=\lambda X$, multiplying both side by X^{*}, we get $X^{*} A X=\lambda X^{*} X$. Taking conjugate transpose both sides, we get $\left(X^{*} A X\right)^{*}=\left(\lambda X^{*} X\right)^{*} \Rightarrow X^{*} A X=\bar{\lambda} X^{*} X$. Thus we see that $\lambda X^{*} X=\bar{\lambda} X^{*} X$. Since $X \neq 0, X^{*} X=\|X\|^{2} \neq 0$ so that $\lambda=\lambda$. For skew-Hermitian matrix, proceed in a similar way.

Theorem 8. Let A be a real symmetric matrix. Then eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

Proof: Let $\lambda_{1} \neq \lambda_{2}$ be two eigenvalues of A and v_{1} and v_{2} be corresponding eigenvectors respectively. Then $A v_{1}=\lambda_{1} v_{1} \Rightarrow v_{1}^{T} A^{T}=\lambda_{1} v_{1}^{T} \Rightarrow v_{1}^{T} A^{T} v_{2}=\lambda_{1} v_{1}^{T} v_{2}$. Also $\left(A v_{1}\right)^{T} v_{2}=v_{1}^{T} A^{T} v_{2}=v_{1}^{T} A v_{2}=\lambda_{2} v_{1}^{T} v_{2}$. Hence, $\left(\lambda_{1}-\lambda_{2}\right) v_{1}^{T} v_{2}=0$, and $\lambda_{1} \neq \lambda_{2}$ so that $v_{1}^{T} v_{2}=0=\left\langle v_{1}, v_{2}\right\rangle \Rightarrow v_{1} \perp v_{2}$.

Theorem 9. [Spectral Theorem for a real symmetric matrix] Let A be a real symmetric matrix. Then there exists an orthogonal matrix P such that $P^{T} A P=D$, where D is a diagonal matrix. In other words, a real symmetric matrix is orthogonally diagonalizable.

Proof: The proof is by induction on order of the matrix. The result holds for $n=1$. Suppose the result holds for $(n-1) \times(n-1)$ symmetric matrix. Let A be a symmetric matrix of order $n \times n$. Note
that A has real eigenvalues. Let $\lambda \in \mathbb{R}$ be one of the eigenvalue and $0 \neq X \in \mathbb{R}^{n}$ be a corresponding eigenvector with norm 1, then $A X=\lambda X$. Construct an orthonormal basis (by Gram-Schmidt process) $B=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where $v_{1}=X$ and $v_{i} \in \mathbb{R}^{n}$. Construct a matrix P such that the i-th column of P is v_{i}. Then P is an orthogonal matrix.

Note that the matrix $P^{-1} A P$ is symmetric and the first column of $P^{-1} A P$ is given by $P^{-1} A P\left(e_{1}\right)$, thus $P^{-1} A\left(P e_{1}\right)=P^{-1} A X=P^{-1} \lambda X=\lambda e_{1}$. Therefore, the matrix can be represented as $P^{-1} A P=\left[\begin{array}{cc}\lambda & 0 \\ 0 & C\end{array}\right]$, where C is a symmetric matrix of order $(n-1) \times(n-1)$. Hence, by induction hypothesis, C is similar to a diagonal matrix, say D, i.e., there is an orthogonal matrix Q such that $Q^{-1} C Q=Q^{T} C Q=D$. Let $R=P\left[\begin{array}{ll}1 & 0 \\ 0 & Q\end{array}\right]$. We claim that R is orthogonal and $R^{T} A R$ is diagonal.

$$
\begin{gathered}
R^{-1}=\left[\begin{array}{cc}
1 & 0 \\
0 & Q^{-1}
\end{array}\right] P^{-1}=\left[\begin{array}{cc}
1 & 0 \\
0 & Q^{T}
\end{array}\right] P^{T}=R^{T} \text {, and } \\
R^{T} A R=\left[\begin{array}{cc}
1 & 0 \\
0 & Q^{T}
\end{array}\right] P^{T} A P\left[\begin{array}{cc}
1 & 0 \\
0 & Q
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & Q^{T}
\end{array}\right]\left[\begin{array}{cc}
\lambda & 0 \\
0 & C
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & Q
\end{array}\right]=\left[\begin{array}{cc}
\lambda & 0 \\
0 & Q^{T} C Q
\end{array}\right]=\left[\begin{array}{cc}
\lambda & 0 \\
0 & D
\end{array}\right] .
\end{gathered}
$$

Thus R is an orthogonal matrix such that $R^{T} A R$ is diagonal. Therefore, A is orthogonally diagonalizable.

Theorem 10. Converse of the above theorem is also true, i.e., if $A \in M_{n}(\mathbb{R})$ is orthogonally diagonalizable, then A is symmetric.

Proof: Let A be a matrix which is orthogonally diagonalizable. Then there is an orthogonal matrix P s.t. $P^{-1} A P=P^{T} A P=D$, equivalentely, $A=P D P^{-1}=P D P^{T}$. This shows that $A^{T}=A$. Hence proved.

Example: Find an orthogonal matrix P and a diagonal matrix D such that $P^{T} A P=D$, where

$$
A=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right]
$$

The characteristic polynomial is $(x+1)^{2}(x-5)$. The eigenvalues are $5,-1,-1$. An eigenvector corresponding to $\lambda=5$ is $v_{1}=(1,1,1)$. The two independent eigenvectors corresponding to $\lambda=-1$ are $v_{2}=(-1,0,1)$ and $v_{3}=(-1,1,0)$. Thus, $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ forms a basis of \mathbb{R}^{3}. To find an orthonormal basis, we apply Gram-Schmidt process on B. Thus
$w_{1}=v_{1},\left\|w_{1}\right\|=\sqrt{3}$,
$w_{2}=v_{2}$ (eigen vectors corresponding to distinct eigen values are orthogonal), $\left\|w_{2}\right\|=\sqrt{2}$,
$w_{3}=v_{3}-\frac{\left\langle v_{3}, w_{1}\right\rangle w_{1}}{\left\|w_{1}\right\|^{2}}-\frac{\left\langle v_{3}, w_{2}\right\rangle w_{2}}{\left\|w_{2}\right\|^{2}}=(-1,1,0)-0(1,1,1)-\frac{1(-1,0,1)}{2}=\left(-\frac{1}{2}, 1,-\frac{1}{2}\right),\left\|w_{3}\right\|=\frac{\sqrt{6}}{2}$
Thus, $P=\left[\begin{array}{ccc}\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{\sqrt{6}}{3} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}}\end{array}\right]$ and $D=\left[\begin{array}{ccc}5 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$. Verify yourself that $P^{T} A P=D$.

