Lecture 2
 System of Linear Equations

Definition 1. An equation of the form $a_{1} x_{1}+\ldots+a_{n} x_{n}=b$, where $b, a_{1}, a_{2}, \ldots, a_{n}$ are constants, is called a linear equation in n unknowns. If the constants a_{1}, \ldots, a_{n} and b are from a set X, the equation is called a linear equation over the set X.

Throughout this course, we deal with linear equations over the field \mathbb{R} or \mathbb{C}.
System of linear equations: Let \mathbb{F} be a field and $a_{i j}, b_{j} \in \mathbb{F}$, for $1 \leq i \leq m$, and $1 \leq j \leq n$. The following system is called a system of m linear equations in n unknowns over \mathbb{F}.

$$
\begin{gather*}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \tag{1}\\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}= \\
\vdots
\end{gather*}
$$

If $b_{j}=0$ for all $1 \leq j \leq m$, the system is called a homogeneous system of linear equations, otherwise it is called a non-homogeneous system of linear equations. The above system can be written as $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$, for $1 \leq i \leq m$. An n-tuple $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ is called a solution of this system if it satisfies each of the equations of the system.

First we consider a system having only one equation

$$
2 x+3 y+4 z=5
$$

Both $(1,1,0)$ and $(-1,1,1)$ satisfy this equation. In fact, for any real numbers x and y and we can find z by substituting the values of x and y in the equation. Geometrically, the collection of all the solutions of the equation $2 x+3 y+4 z=5$ is a plane in \mathbb{R}^{3}.

Now, we consider a system of two linear equations:

$$
\begin{array}{r}
2 x+3 y+4 z=5 \\
x+y+z=2
\end{array}
$$

A solution of this system is a solution of the first equation which is also a solution of the second equation. If $A_{i}(i=1,2)$ is the set of solutions of the i-th equation, then the set of solutions of the system is $A_{1} \cap A_{2}$. Here, we know that for each i, A_{i} is a plane in \mathbb{R}^{3}. Thus, the solution of system is the intersection of two
planes. In \mathbb{R}^{3}, the intersection of two planes is either an empty set (plane are parallel) or a line or a plane (the planes are identical). For this system, the solution set is $A_{1} \cap A_{2}=\{(1,1,0)+z(1,-2,1): z \in \mathbb{R}\}$ which represents a line in \mathbb{R}^{3}. (Check it yourself!)

Remark 2. 1. A non-homogeneous system of 2 linear equations in 3 unknowns over \mathbb{R} has either no solution or infinitely many solutions.
2. A homogeneous system of 2 linear equations in 3 unknowns over \mathbb{R} always has infinitely many solutions.

Now consider the following two systems of linear equations:

$$
\begin{array}{rrr}
2 x+3 y+4 z=5 & 2 x+3 y+4 z=5 & 2 x+3 y+4 z=5 \\
x+y+z=2 & x+y+z=2 & x+y+z=2 \\
y+z=1 & x+2 y+3 z=2 & x+2 y+3 z=3
\end{array}
$$

The first system has the unique solution, that is, $(1,1,0)$, the second system has no solution and the third system has more than one solution, in fact, infinitely many solutions.

Question 3. When System (1) has no solution or a unique solution or infinitely many solutions?

System (1) can be described by the following matrix equation:

$$
A x=b,
$$

where $A=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right) \in M_{m \times n}(\mathbb{F}), x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right) \in M_{n \times 1}(\mathbb{F})$ and $b=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right) \in M_{m \times 1}(\mathbb{F})$.
The matrix A is called the coefficient matrix, x is the matrix (or column) of unknowns and b is the matrix (or column) of constants.

The matrix $(A \mid b)=\left(\begin{array}{cccc|c}a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\ a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}\end{array}\right) \in M_{m \times(n+1)}(\mathbb{F})$ obtained by attaching the column b with A, is called the augmented matrix of the system.

Some properties of a system of linear equations

Let $A x=b\left(\sum_{j=0}^{n} a_{i j} x_{j}=b_{i}\right.$ for $\left.1 \leq i \leq m\right)$ be a non-homogeneous system of linear equations and $A x=0\left(\sum_{j=0}^{n} a_{i j} x_{j}=0\right.$ for $\left.1 \leq i \leq m\right)$ be the associated homogeneous system. Let S and S_{h} denote the solution sets of the systems $A x=b$ and $A x=0$ respectively. The addition of two elements in \mathbb{F}^{n} is given by

$$
x+y=\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)
$$

and the scalar multiplication is given by

$$
\alpha x=\alpha\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{n}\right)
$$

Then we have the following statements.

P1: $x=\left(x_{1}, \ldots, x_{n}\right) \in S$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in S_{h} \Rightarrow x+\alpha y \in S$ for all $\alpha \in \mathbb{R}$.

Proof: The i-th component of $A(x+\alpha y)$ is $\sum_{j=1}^{n} a_{i j}\left(x_{j}+\alpha y_{j}\right)=\sum_{j=1}^{n} a_{i j} x_{j}+\alpha \sum_{j=1}^{n} a_{i j} y_{j}=$ $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$ for $1 \leq i \leq m$. Therefore, $A(x+\alpha y)=b$ so that $x+\alpha y \in S$.

P2: Let $x \in S$ and $x+S_{h}:=\left\{x+y: y \in S_{h}\right\}$. Then $S=x+S_{h}$.

Proof: $\mathbf{P} 1 \Rightarrow x+S_{h} \subseteq S$. Also, for all $z \in S, z=x+(z-x) \in x+S_{h} \Rightarrow S \subseteq x+S_{h}$.
P3: If the system $A x=b$ has more than one solution, then it has infinitely many solutions.

Proof: Let x, y be two solutions of $A x=b$. Then it is easy to see that $\alpha x+(1-\alpha) y$ is again a solution for each $\alpha \in \mathbb{R}$.

P4: If $A x=0$ has a non zero solution, then it has infinitely many solutions. (Do it yourself!)
Exercise 4. Classify the following systems in the categories:

1) The system has no solution 2) Exactly one solution 3) More than one solution
1. $x_{1}+x_{2}+x_{3}=3, x_{1}+2 x_{2}+3 x_{3}=6, x_{2}+2 x_{3}=1$.
2. $x_{1}+x_{2}+x_{3}=3, x_{1}+2 x_{2}+3 x_{3}=6, x_{1}+x_{2}+2 x_{3}=4$.
3. $x_{1}+x_{2}+x_{3}=3, x_{1}+2 x_{2}+3 x_{3}=6, x_{2}+2 x_{3}=3$.

Definition 5. An equation $d_{1} x_{1}+d_{2} x_{2}+\ldots+d_{n} x_{n}-e=0$ is called a linear combination of the equations Eq_{i} if it can be written as $c_{1} \mathrm{Eq}_{1}+c_{2} \mathrm{Eq}_{2}+\cdots+c_{n} \mathrm{Eq}_{n}$, where $\mathrm{Eq}_{i}=a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n}-b_{i}$ and $c_{i} \in \mathbb{F}$ for $1 \leq i \leq n$.

Remark 6. If $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a solution of System (1), then it is a solution of $d_{1} x_{1}+d_{2} x_{2}+\ldots+$ $d_{n} x_{n}-e=0$. But converse need not be true. For instance, consider the following systems:

$$
\begin{array}{rlr}
x+y+z & =1 & x+y+z=1 \\
x+y & =1 & 2 x+y-z=2 \\
x-z & =1 &
\end{array}
$$

Then latter one is obtained from former system. We see that $(-1,3,-1)$ is solution of the latter one but not of the former one.

Definition 7. Two systems, say S_{1} and S_{2} of linear equations, are called equivalent if each equation of S_{1} is a linear combination of the equations of S_{2} and vice versa.

Theorem 8. The solution sets of equivalent systems of linear equations are identical.

