Lecture 19

Fundamental Theorem of Linear Algebra & Least-Square Approximation

Fundamental Subspaces

Let $A \in M_{m \times n}(\mathbb{R})$. Suppose N(A) is the null space of A, C(A) is the column space of A, $C(A^T)$ is the column space of A^T and $N(A^T)$ is the null space of A^T . Then N(A), $C(A^T)$ are subspaces of \mathbb{R}^n , and C(A), $N(A^T)$ are subspaces of \mathbb{R}^m . These subspaces are called fundamental subspaces associated to A.

Lemma 1. $N(A) \perp C(A^T)$ and $C(A) \perp N(A^T)$.

Proof: Let $x \in N(A)$ and $y \in C(A^T)$. Then A(x) = 0 and $A^T z = y$ for some $z \in \mathbb{R}^m$. Then $y^T x = z^T A x = 0$, that is, $\langle x, y \rangle = 0$ so that $N(A) \perp C(A^T)$. Similarly, $C(A) \perp N(A^T)$.

Theorem 2 (Fundamental Theorem of Linear Algebra). Let $A \in M_{m \times n}(\mathbb{R})$. Then 1. $\mathbb{R}^n = N(A) \oplus C(A^T)$ 2. $\mathbb{R}^m = C(A) \oplus N(A^T)$.

Proof: Since $C(A^T)$ is a subspace of \mathbb{R}^n , $\mathbb{R}^n = C(A^T) \oplus (C(A^T))^{\perp}$. We claim that $C(A^T)^{\perp} = N(A)$. By Lemma 11, $N(A) \subseteq C(A^T)^{\perp}$. Note that $n = \dim(C(A^T)) + \dim((C(A^T))^{\perp})$ and by rank-nullity theorem $n = \operatorname{rank}(A) + \operatorname{nullity}(A)$. This implies $\dim(N(A)) = \dim((C(A^T))^{\perp})$. Hence, $N(A) = (C(A^T))^{\perp}$. Similarly one can proof $\mathbb{R}^m = C(A) + N(A^T)$.

Least-Square Approximation

Problem 3. Let $A \in M_{m \times n}(\mathbb{R})$ and $b \in \mathbb{R}^n$ such that $b \notin C(A)$, where C(A) is the column-space of A. In other words, the system Ax = b is inconsistent. So the problem is to find a "pseudo solution" or "approximate solution" under certain condition in error term.

Definition 4 (Least-Square Method). A method to approximate a solution of an inconsistent system of linear equations such that the solution minimizes the sum of square of errors made in every equation.

Let AX = b be an inconsistent system of linear equation, where $A \in M_{m \times n}(\mathbb{R}), X \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$. Suppose $X_0 = (x_1, x_2, \dots, x_n)$ is an approximate solution of the system. Then $AX_0 = b'$ and $b' \neq b$. The error term for the *i*-th equation is $|b_i - b'_i| = |\sum_{j=1}^n a_{ij}x_j - b_i|$. For X_0 to be a least-square solution of the system, the sum of square of the errors made in each equation should be minimum, that is,

$$\sum_{i=1}^{m} \left| \sum_{j=1}^{n} a_{ij} x_j - b_i \right|^2 \text{ is minimum.}$$

Theorem 5. Suppose X_0 is a least square solution. Then AX_0 is the orthogonal projection of b on the column-space of A.

Proof. Let X_0 be the least-square approximation of AX = b. Then $\sum_{i=1}^{m} \left| \sum_{j=1}^{n} a_{ij} x_j - b_i \right|^2$ is minimum. For

$$Y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n, \sum_{i=1}^m \left| \sum_{j=1}^n a_{ij} y_j - b_i \right|^2 = ||AY - b||^2. \text{ Thus } ||AX_0 - b|| \le ||AX - b|| \text{ for all } X \in \mathbb{R}^n$$

as $||AX_0 - b||$ is minimum. Recall that w_v is the orthogonal projection of v on to W if and only if $||v - w_v|| \le ||v - w||$ for all $w \in W$. Take $V = \mathbb{R}^m$, $W = \{AX : X \in \mathbb{R}^n\}$ and v = b. Then AX_0 is the orthogonal projection of b on the column-space of A.

Theorem 6. Let X_0 be a least-square approximation of AX = b and N(A) be the null space of A. Suppose S is the set of all least-square solutions of AX = b. Then $S = X_0 + N(A)$.

Proof. Let $X \in X_0 + N(A)$. Then $X = X_0 + X_h$ so that $AX - b = AX_0 - b$. Thus $X \in S$. Now suppose $X \in S$. Then $||AX - b|| = ||AX_0 - b|| \Rightarrow ||(AX_0 - b) + A(X - X_0)||^2 = ||AX_0 - b||^2 \Rightarrow ||AX_0 - b||^2 + ||A(X - X_0)||^2 = ||AX_0 - b||$ since $A(X - X_0) \in C(A)$ and $(AX_0 - b) \perp Y$ for all $Y \in C(A)$. Therefore, $||A(X - X_0)|| = 0 \Rightarrow A(X - X_0) = 0 \Rightarrow X - X_0 \in N(A)$ so that $X = X_0 + (X - X_0) \in X_0 + N(A)$. □

Application of Fundamental Theorem of Linear Algebra

Lemma 7. Let $A \in M_{m \times n}(\mathbb{R})$. Then the $A^T A X = A^T b$ is consistent for every $b \in \mathbb{R}^m$.

Proof. It is enough to show that each $A^T b$ is in the column space of $A^T A$. By Fundamental Theorem of Linear Algebra, $\mathbb{R}^m = C(A) \oplus N(A^T)$. Thus, there exist $X \in \mathbb{R}^m$ and $Y \in N(A^T)$ such that b = AX + Y. Therefore, $A^T b = A^T(AX) + A^T Y = A^T A X + 0$.

Theorem 8. Let AX = b be an inconsistent system of linear equations and $X_0 \in \mathbb{R}^n$. Then X_0 is a least-square solution of AX = b if and only if $A^T A X_0 = A^T b$.

Proof. Note that $N(A^T)^{\perp} = C(A)$. Then X_0 is a least-square solution if and only if $AX_0 - b \in C(A)^{\perp}$, that is, $(AX_0 - b) \in N(A^T) \Leftrightarrow A^T(AX_0 - b) = 0 \Leftrightarrow A^TAX_0 = A^Tb$.

Remark 9. For finding a least-square solution, one can solve the system $A^T A X = A^T b$.

Example 10. Find a straight line y = a + bx which fits best the given points (1,0), (2,3), (3,4), (4,4) by least-square method.

Solution: We get the following system of equations

$$a+b = 0$$

$$a+2b = 3$$

$$a+3b = 4$$

$$a+4b = 4$$

which is inconsistent. For finding a least-square solution, we will solve the system $A^T A X = A^T b$, where $A \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix}$ and $b = \begin{pmatrix} 0 \\ 3 \\ 4 \\ 4 \end{pmatrix}$. Thus, $A^T A = \begin{pmatrix} 4 & 10 \\ 10 & 30 \end{pmatrix}$ and $A^T b = \begin{pmatrix} 11 \\ 34 \end{pmatrix}$. Thus, $(A^T A | A^T b = \begin{pmatrix} 4 & 10 \\ 10 & 30 \end{pmatrix}$ and $A^T b = \begin{pmatrix} 11 \\ 34 \end{pmatrix}$. Thus, $(A^T A | A^T b = \begin{pmatrix} 4 & 10 \\ 10 & 30 \end{pmatrix}$ and $A^T b = \begin{pmatrix} 11 \\ 34 \end{pmatrix}$. Thus, $(A^T A | A^T b = \begin{pmatrix} 4 & 10 \\ 10 & 30 \end{pmatrix}$ and $A^T b = \begin{pmatrix} 11 \\ 34 \end{pmatrix}$. Thus, $(A^T A | A^T b = \begin{pmatrix} 4 & 10 \\ 10 & 30 \end{pmatrix}$ and $A^T b = \begin{pmatrix} 11 \\ 34 \end{pmatrix}$. Thus, $(A^T A | A^T b = \begin{pmatrix} 4 & 10 \\ 10 & 30 \end{pmatrix}$ and $A^T b = \begin{pmatrix} 11 \\ 34 \end{pmatrix}$. Thus, $(A^T A | A^T b = \begin{pmatrix} 4 & 10 \\ 10 & 30 \end{pmatrix}$ and $A^T b = \begin{pmatrix} 11 \\ 34 \end{pmatrix}$. Thus, $(A^T A | A^T b = \begin{pmatrix} 4 & 10 \\ 10 & 30 \end{pmatrix}$ and $A^T b = \begin{pmatrix} 11 \\ 34 \end{pmatrix}$. Thus, $(A^T A | A^T b = \begin{pmatrix} 4 & 10 \\ 10 & 30 \end{pmatrix}$. Thus, $y = -1/2 + \frac{13}{10}x$ is a best fit. For applying orthogonal projection method, $W = C(A) = \{(x + y, x + 2y, x + 3y, x + 4y) \mid x, y \in \mathbb{R}\}$. Basis of W is $\{(1, 1, 1, 1), (1, 2, 3, 4)\}$. An orthogonal basis of W is $\{(1, 1, 1, 1), (-3/2, -1/2, 1/2, 3/2)\}$, $||(1, 1, 1, 1)||^2 = 4$ and $||(-3/2, -1/2, 1/2, 3/2)||^2 = 5$. Take v = b = (0, 3, 4, 4). Then $P_W(v) = 11/4(1, 1, 1, 1) + 13/10(-3/2, -1/2, 1/2, 3/2) = 1/10(8, 21, 34, 47)$. Then a least-square solution can be obtained by solving $AX = P_W(v)$ so that $\begin{pmatrix} 1 & 1 & | & 8/10 \\ 1 & 2 & | & 21/10 \\ 1 & 3 & | & 34/10 \\ 1 & 4 & | & 47/10 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & | & 8/10 \\ 0 & 1 & | & 13/10 \\ 0 & 3 & | & 39/10 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & | & 8/10 \\ 0 & 1 & | & 13/10 \\ 0 & 0 & | & 0 \end{pmatrix}$.

Thus (-1/2, 13/10) is a least-square solution so that y = -1/2x + 13/10 is a best fit.