Lecture 19
Fundamental Theorem of Linear Algebra \& Least-Square Approximation

Fundamental Subspaces

Let $A \in M_{m \times n}(\mathbb{R})$. Suppose $N(A)$ is the null space of $A, C(A)$ is the column space of $A, C\left(A^{T}\right)$ is the column space of A^{T} and $N\left(A^{T}\right)$ is the null space of A^{T}. Then $N(A), C\left(A^{T}\right)$ are subspaces of \mathbb{R}^{n}, and $C(A), N\left(A^{T}\right)$ are subspaces of \mathbb{R}^{m}. These subspaces are called fundamental subspaces associated to A.

Lemma 1. $N(A) \perp C\left(A^{T}\right)$ and $C(A) \perp N\left(A^{T}\right)$.
Proof: Let $x \in N(A)$ and $y \in C\left(A^{T}\right)$. Then $A(x)=0$ and $A^{T} z=y$ for some $z \in \mathbb{R}^{m}$. Then $y^{T} x=z^{T} A x=0$, that is, $\langle x, y\rangle=0$ so that $N(A) \perp C\left(A^{T}\right)$. Similarly, $C(A) \perp N\left(A^{T}\right)$.

Theorem 2 (Fundamental Theorem of Linear Algebra). Let $A \in M_{m \times n}(\mathbb{R})$. Then

1. $\mathbb{R}^{n}=N(A) \oplus C\left(A^{T}\right)$
2. $\mathbb{R}^{m}=C(A) \oplus N\left(A^{T}\right)$.

Proof: Since $C\left(A^{T}\right)$ is a subspace of $\mathbb{R}^{n}, \mathbb{R}^{n}=C\left(A^{T}\right) \oplus\left(C\left(A^{T}\right)\right)^{\perp}$. We claim that $C\left(A^{T}\right)^{\perp}=N(A)$. By Lemma 11, $N(A) \subseteq C\left(A^{T}\right)^{\perp}$. Note that $n=\operatorname{dim}\left(C\left(A^{T}\right)\right)+\operatorname{dim}\left(\left(C\left(A^{T}\right)\right)^{\perp}\right)$ and by rank-nullity theorem $n=\operatorname{rank}(A)+\operatorname{nullity}(A)$. This implies $\operatorname{dim}(N(A))=\operatorname{dim}\left(\left(C\left(A^{T}\right)\right)^{\perp}\right)$. Hence, $N(A)=\left(C\left(A^{T}\right)\right)^{\perp}$. Similarly one can proof $\mathbb{R}^{m}=C(A)+N\left(A^{T}\right)$.

Least-Square Approximation

Problem 3. Let $A \in M_{m \times n}(\mathbb{R})$ and $b \in \mathbb{R}^{n}$ such that $b \notin C(A)$, where $C(A)$ is the column-space of A. In other words, the system $A x=b$ is inconsistent. So the problem is to find a "pseudo solution" or "approximate solution" under certain condition in error term.

Definition 4 (Least-Square Method). A method to approximate a solution of an inconsistent system of linear equations such that the solution minimizes the sum of square of errors made in every equation.

Let $A X=b$ be an inconsistent system of linear equation, where $A \in M_{m \times n}(\mathbb{R}), X \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{m}$. Suppose $X_{0}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an approximate solution of the system. Then $A X_{0}=b^{\prime}$ and $b^{\prime} \neq b$. The error term for the i-th equation is $\left|b_{i}-b_{i}^{\prime}\right|=\left|\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}\right|$. For X_{0} to be a least-square solution of the system, the sum of square of the errors made in each equation should be minimum, that is,

$$
\sum_{i=1}^{m}\left|\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}\right|^{2} \text { is minimum. }
$$

Theorem 5. Suppose X_{0} is a least square solution. Then $A X_{0}$ is the orthogonal projection of b on the column-space of A.

Proof. Let X_{0} be the least-square approximation of $A X=b$. Then $\sum_{i=1}^{m}\left|\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}\right|^{2}$ is minimum. For $Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}, \sum_{i=1}^{m}\left|\sum_{j=1}^{n} a_{i j} y_{j}-b_{i}\right|^{2}=\|A Y-b\|^{2}$. Thus $\left\|A X_{0}-b\right\| \leq\|A X-b\|$ for all $X \in \mathbb{R}^{n}$
as $\left\|A X_{0}-b\right\|$ is minimum. Recall that w_{v} is the orthogonal projection of v on to W if and only if $\left\|v-w_{v}\right\| \leq\|v-w\|$ for all $w \in W$. Take $V=\mathbb{R}^{m}, W=\left\{A X: X \in \mathbb{R}^{n}\right\}$ and $v=b$. Then $A X_{0}$ is the orthogonal projection of b on the column-space of A.

Theorem 6. Let X_{0} be a least-square approximation of $A X=b$ and $N(A)$ be the null space of A. Suppose S is the set of all least-square solutions of $A X=b$. Then $S=X_{0}+N(A)$.

Proof. Let $X \in X_{0}+N(A)$. Then $X=X_{0}+X_{h}$ so that $A X-b=A X_{0}-b$. Thus $X \in S$. Now suppose $X \in S$. Then $\|A X-b\|=\left\|A X_{0}-b\right\| \Rightarrow\left\|\left(A X_{0}-b\right)+A\left(X-X_{0}\right)\right\|^{2}=\left\|A X_{0}-b\right\|^{2} \Rightarrow\left\|A X_{0}-b\right\|^{2}+$ $\left\|A\left(X-X_{0}\right)\right\|^{2}=\left\|A X_{0}-b\right\|$ since $A\left(X-X_{0}\right) \in C(A)$ and $\left(A X_{0}-b\right) \perp Y$ for all $Y \in C(A)$. Therefore, $\left\|A\left(X-X_{0}\right)\right\|=0 \Rightarrow A\left(X-X_{0}\right)=0 \Rightarrow X-X_{0} \in N(A)$ so that $X=X_{0}+\left(X-X_{0}\right) \in X_{0}+N(A)$.

Application of Fundamental Theorem of Linear Algebra

Lemma 7. Let $A \in M_{m \times n}(\mathbb{R})$. Then the $A^{T} A X=A^{T} b$ is consistent for every $b \in \mathbb{R}^{m}$.
Proof. It is enough to show that each $A^{T} b$ is in the column space of $A^{T} A$. By Fundamental Theorem of Linear Algebra, $\mathbb{R}^{m}=C(A) \oplus N\left(A^{T}\right)$. Thus, there exist $X \in \mathbb{R}^{m}$ and $Y \in N\left(A^{T}\right)$ such that $b=A X+Y$. Therefore, $A^{T} b=A^{T}(A X)+A^{T} Y=A^{T} A X+0$.

Theorem 8. Let $A X=b$ be an inconsistent system of linear equations and $X_{0} \in \mathbb{R}^{n}$. Then X_{0} is a least-square solution of $A X=b$ if and only if $A^{T} A X_{0}=A^{T} b$.

Proof. Note that $N\left(A^{T}\right)^{\perp}=C(A)$. Then X_{0} is a least-square solution if and only if $A X_{0}-b \in C(A)^{\perp}$, that is, $\left(A X_{0}-b\right) \in N\left(A^{T}\right) \Leftrightarrow A^{T}\left(A X_{0}-b\right)=0 \Leftrightarrow A^{T} A X_{0}=A^{T} b$.

Remark 9. For finding a least-square solution, one can solve the system $A^{T} A X=A^{T} b$.
Example 10. Find a straight line $y=a+b x$ which fits best the given points $(1,0),(2,3),(3,4),(4,4)$ by least-square method.

Solution: We get the following system of equations

$$
\begin{array}{r}
a+b=0 \\
a+2 b=3 \\
a+3 b=4 \\
a+4 b=4
\end{array}
$$

which is inconsistent. For finding a least-square solution, we will solve the system $A^{T} A X=A^{T} b$, where $A\left(\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4\end{array}\right)$ and $b=\left(\begin{array}{l}0 \\ 3 \\ 4 \\ 4\end{array}\right)$. Thus, $A^{T} A=\left(\begin{array}{cc}4 & 10 \\ 10 & 30\end{array}\right)$ and $A^{T} b=\binom{11}{34}$. Thus, $\left(A^{T} A \mid A^{T} b=\right.$ $\left(\begin{array}{cc|c}4 & 10 & 11 \\ 10 & 30 & 34\end{array}\right) \sim\left(\begin{array}{cc|c}1 & 3 & 34 / 10 \\ 4 & 10 & \mid 1\end{array}\right) \sim\left(\begin{array}{cc|c}1 & 3 & 34 / 10 \\ 0 & -2 & -13 / 5\end{array}\right) \sim\left(\begin{array}{cc|c}1 & 0 & -1 / 2 \\ 0 & 1 & 13 / 10\end{array}\right)$. Thus, $y=-1 / 2+$ $13 / 10 x$ is a best fit.

For applying orthogonal projection method, $W=C(A)=\{(x+y, x+2 y, x+3 y, x+4 y) \mid x, y \in \mathbb{R}\}$. Basis of W is $\{(1,1,1,1),(1,2,3,4)\}$. An orthogonal basis of W is $\{(1,1,1,1),(-3 / 2,-1 / 2,1 / 2,3 / 2)\}$, $\|(1,1,1,1)\|^{2}=4$ and $\|(-3 / 2,-1 / 2,1 / 2,3 / 2)\|^{2}=5$. Take $v=b=(0,3,4,4)$. Then $P_{W}(v)=$ $11 / 4(1,1,1,1)+13 / 10(-3 / 2,-1 / 2,1 / 2,3 / 2)=1 / 10(8,21,34,47)$. Then a least-square solution can be obtained by solving $A X=P_{W}(v)$ so that $\left(\begin{array}{cc|c}1 & 1 & 8 / 10 \\ 1 & 2 & \mid \\ 1 & 3 & 21 / 10 \\ 1 & 4 & 34 / 10 \\ 1 & 47 / 10\end{array}\right) \sim\left(\begin{array}{cc:c}1 & 1 & 8 / 10 \\ 0 & 1 & 13 / 10 \\ 0 & 2 & 26 / 10 \\ 0 & 3 & 39 / 10\end{array}\right) \sim\left(\begin{array}{cc|c}1 & 1 & 8 / 10 \\ 0 & 1 & 13 / 10 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
Thus $(-1 / 2,13 / 10)$ is a least-square solution so that $y=-1 / 2 x+13 / 10$ is a best fit.

