Lecture 18

Orthogonal Projection \& Shortest Distance

Definition 1. Let $(V,\langle\rangle$,$) be an inner product space and W$ be a subspace of V. Let $v \in V$. The orthogonal projection $P_{W}(v)$ of v onto W is a vector in W such that

$$
\left\langle\left(v-P_{W}(v)\right), w\right\rangle=0 \forall w \in W
$$

Theorem 2. Let W be a finite-dimensional subspace of an inner product space V with an orthonormal basis $\left\{w_{1}, \ldots, w_{n}\right\}$. The orthogonal projection of $v \in V$ onto W is $P_{W}(v)=\left\langle v, w_{1}\right\rangle w_{1}+\ldots+\left\langle v, w_{n}\right\rangle w_{n}$.

Proof. Let $P_{W}(v)=w_{v}$. Note that $w_{v} \in W$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ is a basis of W. Hence, $w_{v}=\left\langle w_{v}, w_{1}\right\rangle w_{1}+$ $\left\langle w_{v}, w_{2}\right\rangle w_{2}+\cdots+\left\langle w_{v}, w_{n}\right\rangle w_{n}$. Further, $\left\langle v-w_{v}, w_{i}\right\rangle=0 \Rightarrow\left\langle v, w_{i}\right\rangle-\left\langle w_{v}, w_{i}\right\rangle=0 \Rightarrow\left\langle w_{v}, w_{i}\right\rangle=\left\langle v, w_{i}\right\rangle \forall i$.

Remark 3. 1. $P_{W}(v)=w_{v} \Leftrightarrow\left\|v-w_{v}\right\| \leq\|v-w\| \forall w \in W$.
2. Let v and u be two vectors in the inner product space V. Then orthogonal projection of u along v is $P_{v}(u)=\frac{\langle u, v>}{\|v\|^{2}} v$.
3. $P_{W}(v) \in W$ and $\left\langle v-P_{W}(v), w\right\rangle=0$ for all $w \in W$, i.e., $v-P_{W}(v)$ is orthogonal to all the elements of W.

Definition 4. Let $(V,\langle\rangle$,$) be an inner product space and S$ be a non-empty subset of V. Then orthogonal complement of S, denoted by S^{\perp}, is defined as $S^{\perp}=\{v \in V \mid\langle v, s\rangle=0 \forall s \in S\}$.

Definition 5. Let $(V,\langle\rangle$,$) be an inner product space and S_{1}$ and S_{2} be two subspaces of V. Then S_{1} is perpendicular to $S_{2}, S_{1} \perp S_{2}$, if $\left\langle s_{1}, s_{2}\right\rangle=0$ for all $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$.

Remark 6. 1. $V^{\perp}=\{0\}$.
2. $\{0\}^{\perp}=V$.
3. Given any subset $W \subseteq V, W^{\perp}$ is a subspace of V.
4. $W \cap W^{\perp}=\{0\}$.

Theorem 7. Let $(V,\langle\rangle$,$) be an inner product space and and S_{1}$ and S_{2} are any two subsets of V. Then 1. $S \subseteq S^{\perp \perp}$.
2. if $S_{1} \subseteq S_{2}$ then $S_{2}^{\perp} \subseteq S_{1}^{\perp}$.
3. if W is a finite-dimensional subspace of V, then $V=W \oplus W^{\perp}$.
4. if V is a finite-dimensional inner product space and W is a subspace of V, then $W=W^{\perp \perp}$.
$\operatorname{Proof}(i)$ Let $w \in S$ then $\langle w, v\rangle=0$ for $v \in S^{\perp}$ which is equivalent to $w \in S^{\perp \perp}$. Thus $S \subseteq S^{\perp \perp}$
$\operatorname{Proof}(i i)$ Let $w \in S_{2}^{\perp}$ then $\langle w, v\rangle=0$ for $v \in S_{2}$, but $S_{1} \subseteq S_{2}$ hence $\langle w, v\rangle=0$ for $v \in S_{1}$ this implies $w \in S_{1}^{\perp}$. Hence $S_{2}^{\perp} \subseteq S_{1}^{\perp}$.
$\operatorname{Proof}(i i i)$ Let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be an orthogonal basis of W. Then for any $v \in V, P_{W}(v)=\sum_{i=1}^{k}\left\langle v, v_{i}\right\rangle \frac{v_{i}}{\left\|v v_{i}\right\|^{2}}$. Thus, for $v \in V, v=P_{W}(v)+\left(v-P_{W}(v)\right) \in W+W^{\perp}$. Further, $W \cap W^{\perp}=\{0\}$. Therefore, $V=W \oplus W^{\perp}$.
$\operatorname{Proof}(i v)$ By the above result, we have $V=W \oplus W^{\perp}$. Since W^{\perp} is a subspace of $V, V=W^{\perp} \oplus W^{\perp \perp}$. Moreover, $W \subseteq W^{\perp \perp}$. Let $v \in W^{\perp \perp}$. Since V is finite dimensional, $\operatorname{dim} W+\operatorname{dim} W^{\perp}=\operatorname{dim} W^{\perp}+\operatorname{dim} W^{\perp \perp}$ so that $W=W^{\perp \perp}$.

Example 8. Let $V=M_{n}(\mathbb{R}), \mathbb{F}=\mathbb{R}$ with inner product given by $\langle A, B\rangle=\operatorname{tr}\left(A B^{T}\right)$. Let W be the space of diagonal matrices. Find W^{\perp}.

Solution: A basis of W is given by $B=\left\{e_{11}, e_{22}, \ldots, e_{n n}\right\}$. Note that B is orthonormal.
$W^{\perp}=\left\{A \in M_{n}(\mathbb{R}) \mid \operatorname{tr}\left(A B^{T}\right)=0 \forall A \in W\right\}=\left\{A \in M_{n}(\mathbb{R}) \mid \operatorname{tr}\left(A e_{i i}^{T}\right)=0\right.$ for $\left.i=1,2, \ldots, n\right\}$ $=\left\{A \in M_{n}(\mathbb{R}) \mid \operatorname{tr}\left(A e_{i i}\right)=0\right.$ for $\left.i=1,2, \ldots, n\right\}=\left\{A \in M_{n}(\mathbb{R}) \mid a_{i i}=0\right.$ for $\left.i=1,2, \ldots, n\right\}$. Thus W^{\perp} is collection of matrices having diagonal entries zero.

Shortest distance of a point from a subspace

Definition 9. Let $(V,\langle\rangle$,$) be an inner product space and W$ be its finite dimensional subspace. Then the shortest distance of a vector $v \in V$ is given by $\left\|v-P_{W}(v)\right\|$.

Example 10. Find the shortest distance of $(1,1)$ from the line $2 y=x$.
Solution: Here $W=L(\{(2,1)\})$. Note that $\|(2,1)\|^{2}=5$ so that orthonormal basis of W is $\{(2,1) / \sqrt{5}\}$. Thus, $P_{W}((1,1))=\langle(1,1),(2,1)\rangle \frac{(2,1)}{5}=\frac{3}{5}(2,1)$. The shortest distance of $(1,1)$ from the line $y=2 x$ is $\left\|(1,1)-\frac{3}{5}(2,1)\right\|=\|(-1,2) / 5\|=\frac{1}{\sqrt{5}}$.

