
Lecture 18
Orthogonal Projection & Shortest Distance

Definition 1. Let (V, 〈 , 〉) be an inner product space and W be a subspace of V. Let v ∈ V. The orthogonal

projection PW (v) of v onto W is a vector in W such that

〈(v − PW (v)), w〉 = 0 ∀w ∈ W.

Theorem 2. Let W be a finite-dimensional subspace of an inner product space V with an orthonormal

basis {w1, . . . , wn}. The orthogonal projection of v ∈ V onto W is PW (v) = 〈v, w1〉w1 + . . . + 〈v, wn〉wn.

Proof. Let PW (v) = wv. Note that wv ∈ W and {w1, . . . , wn} is a basis of W. Hence, wv = 〈wv, w1〉w1 +

〈wv, w2〉w2+· · ·+〈wv, wn〉wn. Further, 〈v−wv, wi〉 = 0⇒ 〈v, wi〉−〈wv, wi〉 = 0⇒ 〈wv, wi〉 = 〈v, wi〉∀i.

Remark 3. 1. PW (v) = wv ⇔ ||v − wv|| ≤ ||v − w|| ∀w ∈ W.

2. Let v and u be two vectors in the inner product space V . Then orthogonal projection of u along v is

Pv(u) = <u,v>
||v||2 v.

3. PW (v) ∈ W and 〈v − PW (v), w〉 = 0 for all w ∈ W , i.e., v − PW (v) is orthogonal to all the elements

of W .

Definition 4. Let (V, 〈 , 〉) be an inner product space and S be a non-empty subset of V . Then orthogonal

complement of S, denoted by S⊥, is defined as S⊥ = {v ∈ V | 〈v, s〉 = 0∀s ∈ S}.

Definition 5. Let (V, 〈 , 〉) be an inner product space and S1 and S2 be two subspaces of V . Then S1 is

perpendicular to S2, S1 ⊥ S2, if 〈s1, s2〉 = 0 for all s1 ∈ S1 and s2 ∈ S2.

Remark 6. 1. V ⊥ = {0}.
2. {0}⊥ = V.

3. Given any subset W ⊆ V , W⊥ is a subspace of V .

4. W ∩W⊥ = {0}.

Theorem 7. Let (V, 〈 , 〉) be an inner product space and and S1 and S2 are any two subsets of V . Then

1. S ⊆ S⊥⊥.

2. if S1 ⊆ S2 then S⊥
2 ⊆ S⊥

1 .

3. if W is a finite-dimensional subspace of V , then V = W ⊕W⊥.

4. if V is a finite-dimensional inner product space and W is a subspace of V , then W = W⊥⊥.

Proof(i) Let w ∈ S then 〈w, v〉 = 0 for v ∈ S⊥ which is equivalent to w ∈ S⊥⊥. Thus S ⊆ S⊥⊥

Proof(ii) Let w ∈ S⊥
2 then 〈w, v〉 = 0 for v ∈ S2, but S1 ⊆ S2 hence 〈w, v〉 = 0 for v ∈ S1 this implies

w ∈ S⊥
1 . Hence S⊥

2 ⊆ S⊥
1 .
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Proof(iii) Let {v1, v2, . . . , vk} be an orthogonal basis of W . Then for any v ∈ V , PW (v) =
k∑

i=1

〈v, vi〉 vi
||vi||2 .

Thus, for v ∈ V, v = PW (v)+(v−PW (v)) ∈ W +W⊥. Further, W ∩W⊥ = {0}. Therefore, V = W ⊕W⊥.

Proof(iv) By the above result, we have V = W⊕W⊥. Since W⊥ is a subspace of V , V = W⊥⊕W⊥⊥.

Moreover, W ⊆ W⊥⊥. Let v ∈ W⊥⊥. Since V is finite dimensional, dimW+dimW⊥ = dimW⊥+dimW⊥⊥

so that W = W⊥⊥.

Example 8. Let V = Mn(R),F = R with inner product given by 〈A,B〉 = tr(ABT ). Let W be the space

of diagonal matrices. Find W⊥.

Solution: A basis of W is given by B = {e11, e22, . . . , enn}. Note that B is orthonormal.

W⊥ = {A ∈ Mn(R) | tr(ABT ) = 0 ∀A ∈ W}= {A ∈ Mn(R) | tr(AeTii) = 0 for i = 1, 2, . . . , n}
= {A ∈Mn(R) | tr(Aeii) = 0 for i = 1, 2, . . . , n} = {A ∈Mn(R) | aii = 0 for i = 1, 2, . . . , n}. Thus W⊥

is collection of matrices having diagonal entries zero.

Shortest distance of a point from a subspace

Definition 9. Let (V, 〈 , 〉) be an inner product space and W be its finite dimensional subspace. Then the

shortest distance of a vector v ∈ V is given by ||v − PW (v)||.

Example 10. Find the shortest distance of (1, 1) from the line 2y = x.

Solution: Here W = L({(2, 1)}). Note that ||(2, 1)||2 = 5 so that orthonormal basis of W is {(2, 1)/
√

5}.
Thus, PW ((1, 1)) = 〈(1, 1), (2, 1)〉 (2,1)

5
= 3

5
(2, 1). The shortest distance of (1, 1) from the line y = 2x is

||(1, 1)− 3
5
(2, 1)|| = ||(−1, 2)/5|| = 1√

5
.
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