Lecture 18 Orthogonal Projection & Shortest Distance

Definition 1. Let (V, \langle , \rangle) be an inner product space and W be a subspace of V. Let $v \in V$. The orthogonal projection $P_W(v)$ of v onto W is a vector in W such that

$$\langle (v - P_W(v)), w \rangle = 0 \ \forall w \in W.$$

Theorem 2. Let W be a finite-dimensional subspace of an inner product space V with an orthonormal basis $\{w_1, \ldots, w_n\}$. The orthogonal projection of $v \in V$ onto W is $P_W(v) = \langle v, w_1 \rangle w_1 + \ldots + \langle v, w_n \rangle w_n$.

Proof. Let $P_W(v) = w_v$. Note that $w_v \in W$ and $\{w_1, \ldots, w_n\}$ is a basis of W. Hence, $w_v = \langle w_v, w_1 \rangle w_1 + \langle w_v, w_2 \rangle w_2 + \cdots + \langle w_v, w_n \rangle w_n$. Further, $\langle v - w_v, w_i \rangle = 0 \Rightarrow \langle v, w_i \rangle - \langle w_v, w_i \rangle = 0 \Rightarrow \langle w_v, w_i \rangle = \langle v, w_i \rangle \forall i$. \Box

Remark 3. 1. $P_W(v) = w_v \Leftrightarrow ||v - w_v|| \le ||v - w|| \forall w \in W.$

2. Let v and u be two vectors in the inner product space V. Then orthogonal projection of u along v is $P_v(u) = \frac{\langle u, v \rangle}{||v||^2} v.$

3. $P_W(v) \in W$ and $\langle v - P_W(v), w \rangle = 0$ for all $w \in W$, i.e., $v - P_W(v)$ is orthogonal to all the elements of W.

Definition 4. Let (V, \langle , \rangle) be an inner product space and S be a non-empty subset of V. Then orthogonal complement of S, denoted by S^{\perp} , is defined as $S^{\perp} = \{v \in V \mid \langle v, s \rangle = 0 \forall s \in S\}$.

Definition 5. Let (V, \langle , \rangle) be an inner product space and S_1 and S_2 be two subspaces of V. Then S_1 is perpendicular to S_2 , $S_1 \perp S_2$, if $\langle s_1, s_2 \rangle = 0$ for all $s_1 \in S_1$ and $s_2 \in S_2$.

Remark 6. 1. $V^{\perp} = \{0\}.$

- 2. $\{0\}^{\perp} = V$.
- 3. Given any subset $W \subseteq V$, W^{\perp} is a subspace of V.
- 4. $W \cap W^{\perp} = \{0\}.$

Theorem 7. Let (V, \langle , \rangle) be an inner product space and and S_1 and S_2 are any two subsets of V. Then 1. $S \subseteq S^{\perp \perp}$.

- 2. if $S_1 \subseteq S_2$ then $S_2^{\perp} \subseteq S_1^{\perp}$.
- 3. if W is a finite-dimensional subspace of V, then $V = W \oplus W^{\perp}$.
- 4. if V is a finite-dimensional inner product space and W is a subspace of V, then $W = W^{\perp \perp}$.

Proof(i) Let $w \in S$ then $\langle w, v \rangle = 0$ for $v \in S^{\perp}$ which is equivalent to $w \in S^{\perp \perp}$. Thus $S \subseteq S^{\perp \perp}$

Proof(*ii*) Let $w \in S_2^{\perp}$ then $\langle w, v \rangle = 0$ for $v \in S_2$, but $S_1 \subseteq S_2$ hence $\langle w, v \rangle = 0$ for $v \in S_1$ this implies $w \in S_1^{\perp}$. Hence $S_2^{\perp} \subseteq S_1^{\perp}$.

Proof(*iii*) Let $\{v_1, v_2, \ldots, v_k\}$ be an orthogonal basis of W. Then for any $v \in V$, $P_W(v) = \sum_{i=1}^k \langle v, v_i \rangle \frac{v_i}{||v_i||^2}$. Thus, for $v \in V$, $v = P_W(v) + (v - P_W(v)) \in W + W^{\perp}$. Further, $W \cap W^{\perp} = \{0\}$. Therefore, $V = W \oplus W^{\perp}$.

Proof(*iv*) By the above result, we have $V = W \oplus W^{\perp}$. Since W^{\perp} is a subspace of $V, V = W^{\perp} \oplus W^{\perp \perp}$. Moreover, $W \subseteq W^{\perp \perp}$. Let $v \in W^{\perp \perp}$. Since V is finite dimensional, dim W+dim W^{\perp} = dim W^{\perp} +dim $W^{\perp \perp}$ so that $W = W^{\perp \perp}$.

Example 8. Let $V = M_n(\mathbb{R}), \mathbb{F} = \mathbb{R}$ with inner product given by $\langle A, B \rangle = tr(AB^T)$. Let W be the space of diagonal matrices. Find W^{\perp} .

Solution: A basis of W is given by $B = \{e_{11}, e_{22}, \ldots, e_{nn}\}$. Note that B is orthonormal. $W^{\perp} = \{A \in M_n(\mathbb{R}) \mid tr(AB^T) = 0 \ \forall A \in W\} = \{A \in M_n(\mathbb{R}) \mid tr(Ae_{ii}^T) = 0 \ \text{for } i = 1, 2, \ldots, n\}$ $= \{A \in M_n(\mathbb{R}) \mid tr(Ae_{ii}) = 0 \ \text{for } i = 1, 2, \ldots, n\} = \{A \in M_n(\mathbb{R}) \mid a_{ii} = 0 \ \text{for } i = 1, 2, \ldots, n\}$. Thus W^{\perp} is collection of matrices having diagonal entries zero.

Shortest distance of a point from a subspace

Definition 9. Let (V, \langle , \rangle) be an inner product space and W be its finite dimensional subspace. Then the shortest distance of a vector $v \in V$ is given by $||v - P_W(v)||$.

Example 10. Find the shortest distance of (1, 1) from the line 2y = x.

Solution: Here $W = L(\{(2,1)\})$. Note that $||(2,1)||^2 = 5$ so that orthonormal basis of W is $\{(2,1)/\sqrt{5}\}$. Thus, $P_W((1,1)) = \langle (1,1), (2,1) \rangle \frac{(2,1)}{5} = \frac{3}{5}(2,1)$. The shortest distance of (1,1) from the line y = 2x is $||(1,1) - \frac{3}{5}(2,1)|| = ||(-1,2)/5|| = \frac{1}{\sqrt{5}}$.