Lecture 17 Inner Product Space

Let $V = \mathbb{R}^2$ and $P = (x_1, x_2)$ and $Q = (y_1, y_2)$ be two vectors in V. The dot product of P and Q is defined as $(x_1, x_2) \cdot (y_1, y_2) = x_1y_1 + x_2y_2$. Then the length of P, $||P|| = \sqrt{(x_1, x_2) \cdot (x_1, x_2)}$, distance between P and Q is $d(p,q) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} = \sqrt{(x_1 - y_1, x_2 - y_2) \cdot (x_1 - y_1, x_2 - y_2)}$ and the angle (θ) between P and Q is defined as $\cos\theta = \frac{P \cdot Q}{||P|||Q||}$.

Observe that the above dot product satisfies the following properties:

- 1. $(x \cdot x) \ge 0$ and $(x \cdot x) = 0$ if and only if x = 0;
- 2. $(x \cdot y) = (y \cdot x), \forall x, y \in \mathbb{R}^n;$
- 3. $((\alpha x) \cdot y) = \alpha(x \cdot y), \forall \alpha \in \mathbb{R};$

4.
$$((x+y) \cdot z) = (x \cdot z) + (y \cdot z)$$

In an arbitrary vector space, we define a function which satisfies the above four conditions, we call this function **inner product**, with the help of this function we can define the geometric concepts such as length of a vector, distance between two vectors and angle between the vectors.

Definition 1. Let V be a vector space over \mathbb{F} . A function $\langle , \rangle : V \times V \longrightarrow \mathbb{F}$ is called an inner product on V if it satisfies the following properties.

1. $\langle x, x \rangle \ge 0 \ \forall x \in V \text{ and } \langle x, x \rangle = 0 \text{ if and only if } x = 0;$ 2. $\langle x, y \rangle = \overline{\langle y, x \rangle}, \ \forall x, y \in V;$ 3. $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle, \ \forall \alpha \in \mathbb{F} \text{ and } \forall x, y, z \in V.$

A vector space $V(\mathbb{F})$ together with an inner product \langle , \rangle is called an inner product space and denoted by (V, \langle , \rangle) .

Example 2. 1. Let $V = \mathbb{R}^n$ over \mathbb{R} with $\langle x, y \rangle = x \cdot y$, that is, $\langle (x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) = x_1y_1 + x_2y_2 + \dots + x_ny_n$. 2. Let $V = \mathbb{C}^n$ over \mathbb{C} . Define $\langle (x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) = x_1\overline{y_1} + x_2\overline{y_2} + \dots + x_n\overline{y_n}$. 3. Let $V = \mathbb{R}^2$, $\mathbb{F} = \mathbb{R}$ and $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$ such that a, c > 0 and $ac - b^2 > 0$. Define $\langle x, y \rangle = y^T A x$. 4. Let V = C[a, b], $\mathbb{F} = \mathbb{R}$. Define $\langle f(x), g(x) \rangle = \int_a^b f(x)\overline{g(x)}dx$. 5. Let $V = M_n(\mathbb{R})$, $\mathbb{F} = \mathbb{R}$. Then for $A, B \in V$, define $\langle A, B \rangle = trace(AB^T)$. **Proposition 3.** Every finite dimensional vector space is an inner product space.

Proof. Let $B = \{v_1, \ldots, v_n\}$ be an ordered basis of $V(\mathbb{F})$. Then for $u, v \in V$, define $\langle u, v \rangle = \alpha_1 \overline{\beta_1} + \ldots + \alpha_n \overline{\beta_n}$, where $(\alpha_1, \ldots, \alpha_n)^T = [u]_B$ and $(\beta_1, \ldots, \beta_n)^T = [v]_B$.

Note that $\langle v, v \rangle > 0$ for non-zero $v \in V$. This leads us to define the concept of length of a vector in an inner product space.

Definition 4. The length of a vector v (norm of a vector v) is defined as $||v|| = \sqrt{\langle v, v \rangle}$.

Theorem 5 (Cauchy-Schwartz Inequality). Let V be an inner product space. Then $|\langle v, u \rangle| \leq ||v|| ||u||, \forall u, v \in V$. The equality holds if and only if the set $\{u, v\}$ is linearly dependent.

Proof: Clearly, the result is true for u = 0. Suppose $u \neq 0$. Let $w = v - \frac{\langle v, u \rangle}{||u||^2} u$. Then $w \in V$. By the property $\langle w, w \rangle \ge 0$, we get $||v||^2 - \frac{|\langle v, u \rangle|^2}{||u||^2} \ge 0$. Therefore, $|\langle v, u \rangle| \le ||v|| ||u||$.

For equality, if u = 0 then the set $\{0, v\}$ is L.D.. If $u \neq 0$ then from the above we have $v = \frac{\langle v, u \rangle}{||u||^2} u$. Conversely, let u, v are L.D. then $u = \alpha v$ for some $\alpha \in \mathbb{F}$. Then $|\langle u, v \rangle| = |\langle \alpha v, v \rangle| = |\alpha|||v||^2 = ||u|| ||v||$.

Proposition 6. Let $(V(\mathbb{F}), \langle , \rangle)$ be an inner product space. Then 1. $||u+v|| \le ||v|| + ||u||, \forall u, v \in V.$ (Triangle inequality) 2. $||u+v||^2 + ||u-v||^2 = 2(||v|| + ||u||)^2 \forall u, v \in V.$ (Parallelogram law)

Proof: By definition, $||u+v||^2 = \langle u+v, u+v \rangle = ||v||^2 + \langle u, v \rangle + \overline{\langle u, v \rangle} + ||u||^2 = ||v||^2 + 2Re(\langle u, v \rangle) + ||u||^2 \leq ||v||^2 + 2|\langle u, v \rangle| + ||u||^2 = (||u|| + ||v||)^2$. Prove the second statement yourself.

Definition 7. Let u and v be vectors in an inner product space (V, \langle , \rangle) . Then u and v are **orthogonal** if $\langle u, v \rangle = 0$. A set S of an inner product space is called an **orthogonal set** of vectors if $\langle u, v \rangle = 0$ for all $u, v \in S$ and $u \neq v$. An **orthonormal set** is an orthogonal set S with the additional property that ||u|| = 1 for every $u \in S$.

Proposition 8. An orthogonal set of non-zero vectors is linearly independent.

Proof: Let S be an orthogonal set (finite or infinite) of non-zero vectors in a given inner product space. Suppose v_I, v_2, \ldots, v_m are distinct vectors in S and take $w = \alpha_1 v_1 + \cdots + \alpha_m v_m$. Then $\langle w, v_i \rangle = \langle \alpha_1 v_1 + \cdots + \alpha_m v_m, v_i \rangle = \alpha_1 \langle v_1, v_i \rangle + \alpha_2 \langle v_2, v_i \rangle + \cdots + \alpha_m \langle v_m, v_i \rangle = \alpha_i \langle v_i, v_i \rangle$. Note that $v_i \neq 0$ so that $\langle v_i, v_i \rangle \neq 0$. If w = 0, then $\alpha_i = 0$ for each *i*. Therefore, S is linearly independent.

Gram-Schmidt orthogonalization process

Theorem 9. Let (V, \langle , \rangle) be an inner product space and $S = \{v_1, v_2, \ldots, v_n\}$ be a linearly independent set of vectors in V. Then we get an orthogonal set $\{w_1, w_2, \ldots, w_n\}$ in V such that

$$L(\{v_1, v_2, \dots, v_n\}) = L(\{w_1, w_2, \dots, w_n\}).$$

Proof. $w_1 = v_1$, then $L(\{w_1\}) = L(\{v_1\})$; $w_2 = v_2 - \frac{\angle v_2, w_1}{\langle w_1, w_1 \rangle} w_1$, then $\langle w_2, w_1 \rangle = 0$ with $L(\{w_1, w_2\}) = L(\{v_1, v_2\})$; $w_3 = v_3 - \frac{\langle v_3, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 - \frac{\langle v_3, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1$, then $\langle w_3, w_1 \rangle = 0$, and $\langle w_3, w_2 \rangle = 0$ with $L(\{w_1, w_2, w_3\}) = L(\{v_1, v_2, v_3\})$; Inductively,

 $w_n = v_n - \frac{\langle v_n, w_{n-1} \rangle}{\langle w_{n-1}, w_{n-1} \rangle} w_{n-1} - \frac{\langle v_n, w_{n-2} \rangle}{\langle w_{n-2}, w_{n-2} \rangle} w_{n-2} - \dots - \frac{\langle v_n, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1, \text{ then } \langle w_n, w_i \rangle = 0 \text{ for } i \neq n \text{ with } L(\{v_1, v_2, \dots, v_n\}) = L(\{w_1, w_2, \dots, w_n\}).$

Remark 10. 1. The method by means of which orthogonal vectors w_1, \ldots, w_n are obtained is known as the **Gram-Schmidt orthogonalization process**.

2. Every finite-dimensional inner product space has an orthonormal basis.

3.Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis for an inner product space V. Then for any $w \in V$, $w = \langle w, v_1 \rangle v_1 + \cdots + \langle w, v_n \rangle v_n$.

Example 11. Find an orthogonal basis of \mathbb{R}^2 with the inner product given by $\langle (x_1, y_1), (x_2, y_2) \rangle = x_1 x_2 + 2x_1 y_2 + 2x_2 y_1 + 5y_1 y_2$.

Solution: We know that $\{e_1, e_2\}$ is a basis of \mathbb{R}^2 . Since $\langle e_1, e_2 \rangle = 2 \neq 0$, the standard basis is not an orthogonal basis under the defined inner product. To get an orthogonal basis we use Gram-Schmidt process: $w_1 = e_1$ and $w_2 = e_2 - \langle e_2, e_1 \rangle \frac{e_1}{||e_1||^2}$ and $||e_1||^2 = \langle e_1, e_1 \rangle = 1$ so that $w_2 = e_2 - 2e_1$. Thus $\{e_1, e_2 - 2e_1\}$ is an orthogonal basis.