
Lecture 17
Inner Product Space

Let V = R2 and P = (x1, x2) and Q = (y1, y2) be two vectors in V . The dot product of P and Q is

defined as (x1, x2) · (y1, y2) = x1y1 + x2y2. Then the length of P , ||P || =
√

(x1, x2) · (x1, x2), distance

between P and Q is d(p, q) =
√

(x1 − y1)2 + (x2 − y2)2 =
√

(x1 − y1, x2 − y2).(x1 − y1, x2 − y2) and the

angle (θ) between P and Q is defined as cosθ = P.Q
||P ||||Q|| .

Observe that the above dot product satisfies the following properties :

1. (x · x) ≥ 0 and (x · x) = 0 if and only if x = 0;

2. (x · y) = (y · x), ∀x, y ∈ Rn;

3. ((αx) · y) = α(x · y), ∀α ∈ R;

4. ((x+ y) · z) = (x · z) + (y · z).

In an arbitrary vector space, we define a function which satisfies the above four conditions, we call

this function inner product, with the help of this function we can define the geometric concepts such

as length of a vector, distance between two vectors and angle between the vectors.

Definition 1. Let V be a vector space over F. A function 〈 , 〉 : V × V −→ F is called an inner product

on V if it satisfies the following properties.

1. 〈x, x〉 ≥ 0 ∀x ∈ V and 〈x, x〉 = 0 if and only if x = 0;

2. 〈x, y〉 = 〈y, x〉, ∀x, y ∈ V ;

3. 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉, ∀α ∈ F and ∀x, y, z ∈ V .

A vector space V (F) together with an inner product 〈 , 〉 is called an inner product space and denoted by

(V, 〈 , 〉).

Example 2. 1. Let V = Rn over R with 〈x, y〉 = x · y, that is, 〈(x1, x2, . . . , xn), (y1, y2, . . . , yn) =

x1y1 + x2y2 + · · ·+ xnyn.

2. Let V = Cn over C. Define 〈(x1, x2, . . . , xn), (y1, y2, . . . , yn) = x1y1 + x2y2 + · · ·+ xnyn.

3. Let V = R2, F = R and A =

[
a b

b c

]
such that a, c > 0 and ac− b2 > 0. Define 〈x, y〉 = yTAx.

4. Let V = C[a, b], F = R. Define 〈f(x), g(x)〉 =
∫ b

a
f(x)g(x)dx.

5. Let V = Mn(R), F = R. Then for A,B ∈ V , define 〈A,B〉 = trace(ABT ).
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Proposition 3. Every finite dimensional vector space is an inner product space.

Proof. Let B = {v1, . . . vn} be an ordered basis of V (F). Then for u, v ∈ V , define 〈u, v〉 = α1β1 + . . . +

αnβn, where (α1, . . . , αn)T = [u]B and (β1, . . . , βn)T = [v]B.

Note that 〈v, v〉 > 0 for non-zero v ∈ V . This leads us to define the concept of length of a vector in an

inner product space.

Definition 4. The length of a vector v (norm of a vector v) is defined as ||v|| =
√
〈v, v〉.

Theorem 5 (Cauchy-Schwartz Inequality). Let V be an inner product space. Then |〈v, u〉| ≤
||v|| ||u||, ∀u, v ∈ V . The equality holds if and only if the set {u, v} is linearly dependent.

Proof: Clearly, the result is true for u = 0. Suppose u 6= 0. Let w = v − 〈v,u〉||u||2u. Then w ∈ V . By the

property 〈w,w〉 ≥ 0, we get ||v||2 − |〈v,u〉|
2

||u||2 ≥ 0. Therefore, |〈v, u〉| ≤ ||v|| ||u||.

For equality, if u = 0 then the set {0, v} is L.D.. If u 6= 0 then from the above we have v = 〈v,u〉
||u||2u.

Conversely, let u, v are L.D. then u = αv for some α ∈ F. Then |〈u, v〉| = |〈αv, v〉| = |α|||v||2 = ||u|| ||v||.

Proposition 6. Let (V (F), 〈 , 〉) be an inner product space. Then

1. ||u+ v|| ≤ ||v||+ ||u||, ∀u, v ∈ V . ( Triangle inequality )

2. ||u+ v||2 + ||u− v||2 = 2(||v||+ ||u||)2 ∀u, v ∈ V . (Parallelogram law)

Proof: By definition, ||u+v||2 = 〈u+v, u+v〉 = ||v||2+〈u, v〉+〈u, v〉+||u||2 = ||v||2+2Re(〈u, v〉)+||u||2 ≤
||v||2 + 2|〈u, v〉|+ ||u||2 = (||u||+ ||v||)2. Prove the second statement yourself.

Definition 7. Let u and v be vectors in an inner product space (V, 〈 , 〉). Then u and v are orthogonal

if 〈u, v〉 = 0. A set S of an inner product space is called an orthogonal set of vectors if 〈u, v〉 = 0 for

all u, v ∈ S and u 6= v. An orthonormal set is an orthogonal set S with the additional property that

||u|| = 1 for every u ∈ S.

Proposition 8. An orthogonal set of non-zero vectors is linearly independent.

Proof: Let S be an orthogonal set (finite or infinite) of non-zero vectors in a given inner product

space. Suppose vI , v2, . . . , vm are distinct vectors in S and take w = α1v1 + · · · + αmvm. Then 〈w, vi〉 =

〈α1v1 + · · · + αmvm, vi〉 = α1〈v1, vi〉 + α2〈v2, vi〉 + · · · + αm〈vm, vi〉 = αi〈vi, vi〉. Note that vi 6= 0 so that

〈vi, vi〉 6= 0. If w = 0, then αi = 0 for each i. Therefore, S is linearly independent.
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Gram-Schmidt orthogonalization process

Theorem 9. Let (V, 〈 , 〉) be an inner product space and S = {v1, v2, . . . , vn} be a linearly independent

set of vectors in V. Then we get an orthogonal set {w1, w2, . . . , wn} in V such that

L({v1, v2, . . . , vn}) = L({w1, w2, . . . , wn}).

Proof. w1 = v1, then L({w1}) = L({v1});
w2 = v2 − ∠v2,w1〉

〈w1,w1〉w1, then 〈w2, w1〉 = 0 with L({w1, w2}) = L({v1, v2});
w3 = v3− 〈v3,w2〉

〈w2,w2〉w2− 〈v3,w1〉
〈w1,w1〉w1, then 〈w3, w1〉 = 0, and 〈w3, w2〉 = 0 with L({w1, w2, w3}) = L({v1, v2, v3});

Inductively,

wn = vn − 〈vn,wn−1〉
〈wn−1,wn−1〉wn−1 − 〈vn,wn−2〉

〈wn−2,wn−2〉wn−2 − · · · − 〈vn,w1〉
〈w1,w1〉w1, then 〈wn, wi〉 = 0 for i 6= n with

L({v1, v2, . . . , vn}) = L({w1, w2, . . . , wn}).

Remark 10. 1. The method by means of which orthogonal vectors w1, . . . , wn are obtained is known as

the Gram-Schmidt orthogonalization process.

2. Every finite-dimensional inner product space has an orthonormal basis.

3.Let {v1, . . . , vn} be an orthonormal basis for an inner product space V . Then for any w ∈ V , w =

〈w, v1〉v1 + · · ·+ 〈w, vn〉vn .

Example 11. Find an orthogonal basis of R2 with the inner product given by 〈(x1, y1), (x2, y2)〉 = x1x2 +

2x1y2 + 2x2y1 + 5y1y2.

Solution: We know that {e1, e2} is a basis of R2. Since 〈e1, e2〉 = 2 6= 0, the standard basis is not

an orthogonal basis under the defined inner product. To get an orthogonal basis we use Gram-Schmidt

process: w1 = e1 and w2 = e2 − 〈e2, e1〉 e1
||e1||2 and ||e1||2 = 〈e1, e1〉 = 1 so that w2 = e2 − 2e1. Thus

{e1, e2 − 2e1} is an orthogonal basis.
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