Lecture 17
Inner Product Space

Let V = R? and P = (x1,72) and Q = (y1,%2) be two vectors in V. The dot product of P and Q is
defined as (x1,22) - (y1,y2) = x1y1 + x2y2. Then the length of P, ||P|| = \/(;El,:vg) - (z1,5), distance

between P and @ is d(p, q) = \/(5171 —y1)? + (12 —1o)? = \/(1'1 — Y1, %2 — Y2).(¥1 — Y1, T2 — y2) and the

angle (0) between P and @ is defined as cosf = Iﬂﬁ@”'

Observe that the above dot product satisfies the following properties:

1. (z-2) > 0and (x-x) =0 if and only if z = 0;
2. (:L‘y):(y:c),V:c,yER”,
3. ((az) - y) = alz-y), Va € R;

4 ((x+y)-2)=(z-2)+(y-2)

In an arbitrary vector space, we define a function which satisfies the above four conditions, we call
this function inner product, with the help of this function we can define the geometric concepts such

as length of a vector, distance between two vectors and angle between the vectors.

Definition 1. Let V' be a vector space over F. A function (,) :V x V — F is called an inner product
on V if it satisfies the following properties.

1. (z,z) > 0Vz € V and (x,z) = 0 if and only if z = 0;

2. (x, > ( ,x), Yo,y e V;
3. {ax ,z2) = oz, z) + By, 2), Vo € F and Vz,y,z € V.

A vector space V (F) together with an inner product (,) is called an inner product space and denoted by

V. ()

Example 2. 1. Let V.= R™ over R with (z,y) = x -y, that is, ((z1,29,...,2n), (Y1,Y2,---,Yn) =
T1Y1 + TaY2 + -+ -+ TpYn.
2. Let V.= C" over C. Define ((x1,%9,...,2n), (Y1,Y2, -, Yn) = T171 + T2l + + -+ + T Yn-

3. LetV=R? F=R and A= such that a,c > 0 and ac — b*> > 0. Define (x,y) = y* Ax.

c
4. Let V = Cla,b], F =R. Define (f(x f f(x
5. Let V.= M,(R), F=R. Then for A,B € V, define (A, B) = tmce(ABT).



Proposition 3. Fvery finite dimensional vector space is an inner product space.

Proof. Let B = {vy,...v,} be an ordered basis of V(F). Then for u,v € V, define (u,v) = a1 + ...+

n P, where (ay,...,0p)" = [u]p and (B, ..., B,)" = [v]s. O

Note that (v,v) > 0 for non-zero v € V. This leads us to define the concept of length of a vector in an
inner product space.

Definition 4. The length of a vector v (norm of a vector v) is defined as ||v|| = 1/ (v, v).

Theorem 5 (Cauchy-Schwartz Inequality). Let V' be an inner product space. Then |(v,u)| <

||| [|u]|, Yu,v € V. The equality holds if and only if the set {u, v} is linearly dependent.

Proof: Clearly, the result is true for u = 0. Suppose u # 0. Let w = v —

ff;ﬁ%u Then w € V. By the
property (w,w) > 0, we get |[o]|? — K29 > 0. Therefore, |(v,u)| < [|v||||ull.

[[ull?

For equality, if uw = 0 then the set {0,v} is L.D.. If u # 0 then from the above we have v = fu) ),

[l

Conversely, let u, v are L.D. then u = av for some o € F. Then |(u,v)| = [{av,v)| = |al||v]]* = ||u]| ||v]|.

Proposition 6. Let (V(F),(,)) be an inner product space. Then
1w+ ol < ||| + ||ull, Yu,v € V. ( Triangle inequality )
2. |Ju+ ||+ [Ju—v||* = 2(||v|] + ||ul])? Yu,v € V. (Parallelogram law)

Proof: By definition, [Ju-+v][2 = (u-+v, utv) = [[o]|+{u, v)+ () +|[ul|2 = [[o] [2+2Re( (u, o)) +|Jul 2 <

]2 + 2[{u, v)| + ||u]|* = (JJul] + ||v]])?. Prove the second statement yourself.

Definition 7. Let u and v be vectors in an inner product space (V,(,)). Then u and v are orthogonal
if (u,v) = 0. A set S of an inner product space is called an orthogonal set of vectors if (u,v) = 0 for
all u,v € S and u # v. An orthonormal set is an orthogonal set S with the additional property that

llul| =1 for every u € S.

Proposition 8. An orthogonal set of non-zero vectors is linearly independent.

Proof: Let S be an orthogonal set (finite or infinite) of non-zero vectors in a given inner product
space. Suppose vy, Ug, ..., U, are distinct vectors in S and take w = ajvy + - -+ + @pUy. Then (w,v;) =
(0 + « -+ QpUm, V) = ag(v1,0;) + @a(ve, V) + -+ + A (U, v;) = a;(v;, v;). Note that v; # 0 so that
(vi,v;) # 0. If w =0, then «; = 0 for each i. Therefore, S is linearly independent.



Gram-Schmidt orthogonalization process

Theorem 9. Let (V,(,)) be an inner product space and S = {vi,vq,...,v,} be a linearly independent

set of vectors in V. Then we get an orthogonal set {wy,ws, ..., w,} inV such that
L({v1,v9,...,0,}) = L({wy,wa, ..., wy,}).

Proof. wy = vy, then L({w1}) = L({v1});

Wy = Vg — f;’fzj’igwl, then (ws,wr) = 0 with L({wy,ws}) = L({v1,v2});

Wy = V3 — ((23;2221 9— élj“;léwl, then (w3, w;) = 0, and (w3, we) = 0 with L({w,ws, ws}) = L({vy,va,v3});
Inductively,

w, = v, — %wn_l — %wn_g e %wl, then (w,,w;) = 0 for i # n with
L({v1,v2,...,0,}) = L({wy,wa, ..., w,}). O
Remark 10. 1. The method by means of which orthogonal vectors wy, ..., w, are obtained is known as

the Gram-Schmidt orthogonalization process.
2. Fvery finite-dimensional inner product space has an orthonormal basis.
3.Let {v1,...,v,} be an orthonormal basis for an inner product space V. Then for any w € V, w =

(w,v1)vy + -+ + (W, v,) vy .

Example 11. Find an orthogonal basis of R? with the inner product given by ((z1,v1), (T2, vy)) = 1179 +
221y2 + 272y1 + SY1Y.

Solution: We know that {e;,es} is a basis of R%. Since (e, e3) = 2 # 0, the standard basis is not
an orthogonal basis under the defined inner product. To get an orthogonal basis we use Gram-Schmidt
process: w; = e; and wy = ey — <€2,€1>H:W and ||e1||* = {e1,e1) = 1 so that wy = ey — 2¢;. Thus

{e1,e9 — 2e1} is an orthogonal basis.



