Lecture 17

Inner Product Space

Let $V=\mathbb{R}^{2}$ and $P=\left(x_{1}, x_{2}\right)$ and $Q=\left(y_{1}, y_{2}\right)$ be two vectors in V. The dot product of P and Q is defined as $\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right)=x_{1} y_{1}+x_{2} y_{2}$. Then the length of $P,\|P\|=\sqrt{\left(x_{1}, x_{2}\right) \cdot\left(x_{1}, x_{2}\right)}$, distance between P and Q is $d(p, q)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}=\sqrt{\left(x_{1}-y_{1}, x_{2}-y_{2}\right) \cdot\left(x_{1}-y_{1}, x_{2}-y_{2}\right)}$ and the angle (θ) between P and Q is defined as $\cos \theta=\frac{P, Q}{\|P\|\|Q\|}$.

Observe that the above dot product satisfies the following properties:

1. $(x \cdot x) \geq 0$ and $(x \cdot x)=0$ if and only if $x=0$;
2. $(x \cdot y)=(y \cdot x), \forall x, y \in \mathbb{R}^{n}$;
3. $((\alpha x) \cdot y)=\alpha(x \cdot y), \forall \alpha \in \mathbb{R} ;$
4. $((x+y) \cdot z)=(x \cdot z)+(y \cdot z)$.

In an arbitrary vector space, we define a function which satisfies the above four conditions, we call this function inner product, with the help of this function we can define the geometric concepts such as length of a vector, distance between two vectors and angle between the vectors.

Definition 1. Let V be a vector space over \mathbb{F}. A function $\langle\rangle:, V \times V \longrightarrow \mathbb{F}$ is called an inner product on V if it satisfies the following properties.

1. $\langle x, x\rangle \geq 0 \forall x \in V$ and $\langle x, x\rangle=0$ if and only if $x=0$;
2. $\langle x, y\rangle=\overline{\langle y, x\rangle}, \forall x, y \in V$;
3. $\langle\alpha x+\beta y, z\rangle=\alpha\langle x, z\rangle+\beta\langle y, z\rangle, \forall \alpha \in \mathbb{F}$ and $\forall x, y, z \in V$.

A vector space $V(\mathbb{F})$ together with an inner product \langle,$\rangle is called an inner product space and denoted by$ (V,\langle,$\rangle).$

Example 2. 1. Let $V=\mathbb{R}^{n}$ over \mathbb{R} with $\langle x, y\rangle=x \cdot y$, that is, $\left\langle\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\right.$ $x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}$.
2. Let $V=\mathbb{C}^{n}$ over \mathbb{C}. Define $\left\langle\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}+\cdots+x_{n} \overline{y_{n}}\right.$.
3. Let $V=\mathbb{R}^{2}, \mathbb{F}=\mathbb{R}$ and $A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ such that $a, c>0$ and $a c-b^{2}>0$. Define $\langle x, y\rangle=y^{T} A x$.
4. Let $V=C[a, b], \mathbb{F}=\mathbb{R}$. Define $\langle f(x), g(x)\rangle=\int_{a}^{b} f(x) \overline{g(x)} d x$.
5. Let $V=M_{n}(\mathbb{R}), \mathbb{F}=\mathbb{R}$. Then for $A, B \in V$, define $\langle A, B\rangle=\operatorname{trace}\left(A B^{T}\right)$.

Proposition 3. Every finite dimensional vector space is an inner product space.

Proof. Let $B=\left\{v_{1}, \ldots v_{n}\right\}$ be an ordered basis of $V(\mathbb{F})$. Then for $u, v \in V$, define $\langle u, v\rangle=\alpha_{1} \overline{\beta_{1}}+\ldots+$ $\alpha_{n} \overline{\beta_{n}}$, where $\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{T}=[u]_{B}$ and $\left(\beta_{1}, \ldots, \beta_{n}\right)^{T}=[v]_{B}$.

Note that $\langle v, v\rangle>0$ for non-zero $v \in V$. This leads us to define the concept of length of a vector in an inner product space.

Definition 4. The length of a vector v (norm of a vector v) is defined as $\|v\|=\sqrt{\langle v, v\rangle}$.
Theorem 5 (Cauchy-Schwartz Inequality). Let V be an inner product space. Then $|\langle v, u\rangle| \leq$ $\|v\|\|u\|, \forall u, v \in V$. The equality holds if and only if the set $\{u, v\}$ is linearly dependent.

Proof: Clearly, the result is true for $u=0$. Suppose $u \neq 0$. Let $w=v-\frac{\langle v, u\rangle}{\|u\|^{2}} u$. Then $w \in V$. By the property $\langle w, w\rangle \geq 0$, we get $\|v\|^{2}-\frac{|\langle v, u\rangle|^{2}}{\|u\|^{2}} \geq 0$. Therefore, $|\langle v, u\rangle| \leq\|v\|\|u\|$.

For equality, if $u=0$ then the set $\{0, v\}$ is L.D.. If $u \neq 0$ then from the above we have $v=\frac{\langle v, u\rangle}{\|u\|^{2}} u$. Conversely, let u, v are L.D. then $u=\alpha v$ for some $\alpha \in \mathbb{F}$. Then $|\langle u, v\rangle|=|\langle\alpha v, v\rangle|=\mid \alpha\| \| v\left\|^{2}=\right\| u\| \| v \|$.

Proposition 6. Let $(V(\mathbb{F}),\langle\rangle$,$) be an inner product space. Then$

1. $\|u+v\| \leq\|v\|+\|u\|, \forall u, v \in V$. (Triangle inequality)
2. $\|u+v\|^{2}+\|u-v\|^{2}=2(\|v\|+\|u\|)^{2} \forall u, v \in V$. (Parallelogram law)

Proof: By definition, $\|u+v\|^{2}=\langle u+v, u+v\rangle=\|v\|^{2}+\langle u, v\rangle+\overline{\langle u, v\rangle}+\|u\|^{2}=\|v\|^{2}+2 \operatorname{Re}(\langle u, v\rangle)+\|u\|^{2} \leq$ $\|v\|^{2}+2|\langle u, v\rangle|+\|u\|^{2}=(\|u\|+\|v\|)^{2}$. Prove the second statement yourself.

Definition 7. Let u and v be vectors in an inner product space $(V,\langle\rangle$,$) . Then u$ and v are orthogonal if $\langle u, v\rangle=0$. A set S of an inner product space is called an orthogonal set of vectors if $\langle u, v\rangle=0$ for all $u, v \in S$ and $u \neq v$. An orthonormal set is an orthogonal set S with the additional property that $\|u\|=1$ for every $u \in S$.

Proposition 8. An orthogonal set of non-zero vectors is linearly independent.

Proof: Let S be an orthogonal set (finite or infinite) of non-zero vectors in a given inner product space. Suppose $v_{I}, v_{2}, \ldots, v_{m}$ are distinct vectors in S and take $w=\alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m}$. Then $\left\langle w, v_{i}\right\rangle=$ $\left\langle\alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m}, v_{i}\right\rangle=\alpha_{1}\left\langle v_{1}, v_{i}\right\rangle+\alpha_{2}\left\langle v_{2}, v_{i}\right\rangle+\cdots+\alpha_{m}\left\langle v_{m}, v_{i}\right\rangle=\alpha_{i}\left\langle v_{i}, v_{i}\right\rangle$. Note that $v_{i} \neq 0$ so that $\left\langle v_{i}, v_{i}\right\rangle \neq 0$. If $w=0$, then $\alpha_{i}=0$ for each i. Therefore, S is linearly independent.

Gram-Schmidt orthogonalization process

Theorem 9. Let $(V,\langle\rangle$,$) be an inner product space and S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a linearly independent set of vectors in V. Then we get an orthogonal set $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ in V such that

$$
L\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right)=L\left(\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}\right)
$$

Proof. $w_{1}=v_{1}$, then $L\left(\left\{w_{1}\right\}\right)=L\left(\left\{v_{1}\right\}\right)$;
$w_{2}=v_{2}-\frac{\left\langle v_{2}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}$, then $\left\langle w_{2}, w_{1}\right\rangle=0$ with $L\left(\left\{w_{1}, w_{2}\right\}\right)=L\left(\left\{v_{1}, v_{2}\right\}\right)$;
$w_{3}=v_{3}-\frac{\left\langle v_{3}, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}-\frac{\left\langle v_{3}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}$, then $\left\langle w_{3}, w_{1}\right\rangle=0$, and $\left\langle w_{3}, w_{2}\right\rangle=0$ with $L\left(\left\{w_{1}, w_{2}, w_{3}\right\}\right)=L\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)$; Inductively,
$w_{n}=v_{n}-\frac{\left\langle v_{n}, w_{n-1}\right\rangle}{\left\langle w_{n-1}, w_{n-1}\right\rangle} w_{n-1}-\frac{\left\langle v_{n}, w_{n-2}\right\rangle}{\left\langle w_{n-2}, w_{n-2}\right\rangle} w_{n-2}-\cdots-\frac{\left\langle v_{n}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}$, then $\left\langle w_{n}, w_{i}\right\rangle=0$ for $i \neq n$ with $L\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right)=L\left(\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}\right)$.

Remark 10. 1. The method by means of which orthogonal vectors w_{1}, \ldots, w_{n} are obtained is known as the Gram-Schmidt orthogonalization process.
2. Every finite-dimensional inner product space has an orthonormal basis.
3.Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be an orthonormal basis for an inner product space V. Then for any $w \in V$, $w=$ $\left\langle w, v_{1}\right\rangle v_{1}+\cdots+\left\langle w, v_{n}\right\rangle v_{n}$.

Example 11. Find an orthogonal basis of \mathbb{R}^{2} with the inner product given by $\left\langle\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\rangle=x_{1} x_{2}+$ $2 x_{1} y_{2}+2 x_{2} y_{1}+5 y_{1} y_{2}$.

Solution: We know that $\left\{e_{1}, e_{2}\right\}$ is a basis of \mathbb{R}^{2}. Since $\left\langle e_{1}, e_{2}\right\rangle=2 \neq 0$, the standard basis is not an orthogonal basis under the defined inner product. To get an orthogonal basis we use Gram-Schmidt process: $w_{1}=e_{1}$ and $w_{2}=e_{2}-\left\langle e_{2}, e_{1}\right\rangle \frac{e_{1}}{\left\|e_{1}\right\|^{2}}$ and $\left\|e_{1}\right\|^{2}=\left\langle e_{1}, e_{1}\right\rangle=1$ so that $w_{2}=e_{2}-2 e_{1}$. Thus $\left\{e_{1}, e_{2}-2 e_{1}\right\}$ is an orthogonal basis.

