Lecture 16

(Cayley Hamilton Theorem, minimal polynomial & Diagonalizability)

Theorem 1. Cayley-Hamilton Theorem: Every square matrix satisfies its characteristic equation, that is, if f(x) is the characteristic polynomial of a square matrix A, then f(A) = 0.

Example 2. Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. Find inverse of A using Cayley-Hamilton theorem.

Solution: The characteristic polynomial of A is $f(x) = x^3 - 2x^2 + 1$. The constant term of f(x) = 1 = det(A), the matrix A is invertible. By Cayley-Hamilton Theorem f(A) = 0. Therefore $A^3 - 2A^2 + I = 0$, $0 \Rightarrow A^{-1} = -A^2 + 2A \Rightarrow -\begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 2 \\ 2 & 2 & 0 \end{pmatrix} \Rightarrow A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$

Definition 3. A polynomial m(x) is said to be the minimal polynomial of A if

- $(i) \ m(A) = 0;$
- (*ii*) m(x) is a monic polynomial (the coefficient of the highest degree term is 1);
- (*iii*) if a polynomial g(x) is such that g(A) = 0, then m(x) divides g(x).

Remark 4. 1. The minimal polynomial of a matrix is unique.

2. The minimal polynomial divides its characteristic polynomial.

Theorem 5. The minimal polynomial and the characteristic polynomial have the same roots.

Proof: Let f(x) and m(x) be the characteristic and minimal polynomial of a matrix respectively. Then f(x) = g(x)m(x). If α is a root of m(x), then it is also a root of f(x). Conversely, if α is a root of f(x), then α is an eigenvalue of the matrix. Therefore, there is a non-zero eigenvector v such that $Av = \alpha v$, this implies $m(A)v = m(\alpha)v$, *i.e.*, $m(\alpha)v = 0$, and $v \neq 0$ so that $m(\alpha) = 0$.

Theorem 6. Similar matrices have the same minimal polynomials.

Proof: Let A and B be two similar matrices. Then $A = P^{-1}BP$ for some invertible matrix P. Let $m_1(x) = a_0 + a_1x + \ldots + x^n$ and $m_2(x) = b_0 + b_1x + \ldots + x^l$ be the respective minimal polynomials of A and B. Then $m_2(A) = 0$, which implies $m_1(x)|m_2(x)$. Similarly $m_1(B) = 0$, which implies $m_2(x)|m_1(x)$. \Box

Theorem 7. Let $A \in M_n(\mathbb{F})$ and $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{F}$ be all eigenvalues of A, where $\lambda_i \neq \lambda_j$ for $i \neq j$. The matrix A is diagonalizable if and only if its minimal polynomial is a product of distinct linear polynomials, that is, $m(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_k)$, where λ_i 's are distinct elements of \mathbb{F} .

Example 8. A matrices $A \in M_n(\mathbb{R})$ such that $A^2 - 3A + 2I = 0$ is diagonalizable.

Solution: Take $g(x) = x^2 - 3x + 2$, then g(A) = 0. Note that g(x) = (x - 1)(x - 2) and the minimal polynomial m(x) of A divides g(x). Therefore, either m(x) = (x - 1) or m(x) = (x - 2) or m(x) = (x - 1)(x - 2). In either of the case, the minimal polynomial is a product of distinct linear polynomials, hence diagonalizable.