(Cayley Hamilton Theorem, minimal polynomial \& Diagonalizability)

Theorem 1. Cayley-Hamilton Theorem: Every square matrix satisfies its characteristic equation, that is, if $f(x)$ is the characteristic polynomial of a square matrix A, then $f(A)=0$.
Example 2. Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right)$. Find inverse of A using Cayley-Hamilton theorem.
Solution: The characteristic polynomial of A is $f(x)=x^{3}-2 x^{2}+1$. The constant term of $f(x)=1=$ $\operatorname{det}(A)$, the matrix A is invertible. By Cayley-Hamilton Theorem $f(A)=0$. Therefore $A^{3}-2 A^{2}+I=$ $0 \Rightarrow A^{-1}=-A^{2}+2 A \Rightarrow-\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 2 & 1 \\ 1 & 1 & 1\end{array}\right)+\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 2 \\ 2 & 2 & 0\end{array}\right) \Rightarrow A^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 0 & 1 \\ 1 & 1 & -1\end{array}\right)$.

Definition 3. A polynomial $m(x)$ is said to be the minimal polynomial of A if
(i) $m(A)=0$;
(ii) $m(x)$ is a monic polynomial (the coefficient of the highest degree term is 1);
(iii) if a polynomial $g(x)$ is such that $g(A)=0$, then $m(x)$ divides $g(x)$.

Remark 4. 1.The minimal polynomial of a matrix is unique.
2. The minimal polynomial divides its characteristic polynomial.

Theorem 5. The minimal polynomial and the characteristic polynomial have the same roots.

Proof: Let $f(x)$ and $m(x)$ be the characteristic and minimal polynomial of a matrix respectively. Then $f(x)=g(x) m(x)$. If α is a root of $m(x)$, then it is also a root of $f(x)$. Conversely, if α is a root of $f(x)$, then α is an eigenvalue of the matrix. Therefore, there is a non-zero eigenvector v such that $A v=\alpha v$, this implies $m(A) v=m(\alpha) v$, i.e., $m(\alpha) v=0$, and $v \neq 0$ so that $m(\alpha)=0$.

Theorem 6. Similar matrices have the same minimal polynomials.

Proof: Let A and B be two similar matrices. Then $A=P^{-1} B P$ for some invertible matrix P. Let $m_{1}(x)=a_{0}+a_{1} x+\ldots+x^{n}$ and $m_{2}(x)=b_{0}+b_{1} x+\ldots+x^{l}$ be the respective minimal polynomials of A and B. Then $m_{2}(A)=0$, which implies $m_{1}(x) \mid m_{2}(x)$. Similarly $m_{1}(B)=0$, which implies $m_{2}(x) \mid m_{1}(x)$.

Theorem 7. Let $A \in M_{n}(\mathbb{F})$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \in \mathbb{F}$ be all eigenvalues of A, where $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$. The matrix A is diagonalizable if and only if its minimal polynomial is a product of distinct linear polynomials, that is, $m(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{k}\right)$, where λ_{i} 's are distinct elements of \mathbb{F}.

Example 8. A matrices $A \in M_{n}(\mathbb{R})$ such that $A^{2}-3 A+2 I=0$ is diagonalizable.
Solution: Take $g(x)=x^{2}-3 x+2$, then $g(A)=0$. Note that $g(x)=(x-1)(x-2)$ and the minimal polynomial $m(x)$ of A divides $g(x)$. Therefore, either $m(x)=(x-1)$ or $m(x)=(x-2)$ or $m(x)=$ $(x-1)(x-2)$. In either of the case, the minimal polynomial is a product of distinct linear polynomials, hence diagonalizable.

