Definition 1. Let $A \in M_{n}(\mathbb{R})$ with the characteristic polynomial $f(x)$. Let λ be an eigenvalue of A then the largest power k such that $(x-\lambda)^{k}$ is a factor of $f(x)$ is called the algebraic multiplicity of λ (A.M. (λ)).

Theorem 2. Let λ be an eigenvalue of a matrix A. Then the set $E_{\lambda}=\left\{x \in \mathbb{F}^{n} \mid A x=\lambda x\right\}$ forms a subspace of \mathbb{F}^{n} and it is called eigenspace corresponding to the eigenvalue λ. Observe that E_{λ} is the set of all eigenvectors associated to λ including the zero vector.

Definition 3. The dimension of the eigenspace $\left(E_{\lambda}\right)$ of eigenvalue λ is called the geometric multiplicity of λ (G.M. (λ)). Thus the geometric multiplicity of λ, G.M. $(\lambda)=\operatorname{Nullity}(A-\lambda I)=n-\operatorname{Rank}(A-\lambda I)$.

Remark 4. 1. Thus the geometric multiplicity of λ, G.M. $(\lambda)=\operatorname{Nullity}(A-\lambda I)=n-\operatorname{Rank}(A-\lambda I)$. 2. $G \cdot M \cdot(\lambda) \geq 1$.

Theorem 5. G.M. $(\lambda) \leq$ A.M. (λ), for an eigenvalue λ of A.

Proof: Let $\operatorname{dim}\left(E_{\lambda}\right)=p$ and let $S=\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ be a basis of E_{λ}. Then S can be extended to a basis S^{\prime} of \mathbb{F}^{n}. Let $S^{\prime}=\left\{X_{1}, X_{2}, \ldots, X_{p}, X_{p+1}, \ldots, X_{n}\right\}$. Then

$$
\begin{aligned}
& A X_{1}=\lambda X_{1} \\
& A X_{2}=\lambda X_{2} \\
& \vdots \\
& A X_{p}=\lambda X_{p} \\
& A X_{p+1}=a_{(p+1) 1} X_{1}+a_{(p+1) 2} X_{2}+\ldots+a_{(p+n) n} X_{n} \\
& \vdots \\
& A X_{n}=a_{n 1} X_{1}+a_{n 2} X_{2}+\ldots+a_{n n} X_{n}
\end{aligned}
$$

The matrix representation of the above system of equations is

$$
A=\left[\begin{array}{cc}
\lambda I_{p} & B \\
0 & C
\end{array}\right]
$$

where I_{p} is the identity matrix of order p. Thus, the characteristic polynomial of A is $f(x)=\operatorname{det}(x I-A)=$ $(x-\lambda)^{p} g(x)$, where $g(x)$ is a polynomial. Hence, the algebraic multiplicity of λ is at least p.

Definition 6. Let $A \in M_{n}(\mathbb{F})$. Then A is called diagonalizable if it has n linearly independent eigenvectors.

Lemma 7. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be distinct eigenvalues of A and $v_{1}, v_{2}, \ldots, v_{k}$ be the corresponding eigenvectors respectively. Then $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent.

Proof. The proof is by induction. Let $k=2$ and v_{1}, v_{2} are linearly dependent. Then $v_{1}=\alpha v_{2} \Rightarrow$ for some $0 \neq \alpha \in \mathbb{F}$. Thus $A v_{1}=\alpha A v_{2} \Rightarrow \lambda_{1} v_{1}=\alpha \lambda_{2} v_{2} \Rightarrow \alpha\left(\lambda_{1}-\lambda_{2}\right) v_{2} \Rightarrow \lambda_{1}=\lambda_{2}$, which is a contradiction. Suppose the result is true for $k-1$, that is, $v_{1}, v_{2}, \ldots, v_{k-1}$ are linearly independent. Let $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}=0$. Then $A\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}\right)=0 \Rightarrow \alpha_{1} \lambda_{1} v_{1}+\alpha_{2} \lambda_{2} v_{2}+\cdots+\alpha_{k} \lambda_{k} v_{k}=0 \Rightarrow$ $\alpha_{1}\left(\lambda_{1}-\lambda_{k}\right) v_{1}+\alpha_{2}\left(\lambda_{2}-\lambda_{k}\right) v_{2}+\cdots+\alpha_{k-1}\left(\lambda_{k-1}-\lambda_{1}\right) v_{k-1}=0\left(\right.$ since $\left.\lambda_{k}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}\right)=0\right)$. By induction hypothesis, $v_{1}, v_{2}, \ldots, v_{k-1}$ are linearly independent, hence $\alpha_{i}=0$ for $1 \leq i \leq k-1$ as $\lambda_{i} \neq \lambda_{k}$. Thus, $\alpha_{k} v_{k}=0$ so that $\alpha_{k}=0$.

Theorem 8. Let $A \in M_{n}(\mathbb{F})$. The following statements are equivalent.

1. A is diagonalizable.
2. There exists an invertible matrix P such that $P^{-1} A P=D$, where D is a diagonal matrix.
3. $A . M .(\lambda)=G . M .(\lambda)$ for each eigenvalue λ of A.

Proof. Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent eigenvectors of A. Construct a matrix P having X_{i} as its i-th column. Then $P^{-1} A P=D$, where D is a diagonal matrix and its i-th diagonal entry is the eigenvalue corresponding to X_{i}. Thus, $1 \Rightarrow 2$. For $2 \Rightarrow 1$, note that the columns of P are L.I. as P is invertible and each column of P is an eigenvector of A. By Lemma $7,3 \Leftrightarrow 1$.

Example 9. Check diagonalizability of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$. If diagonalizable, find a matrix P such that $P^{-1} A P$ is a diagonal matrix.

Solution: The characteristic polynomial of A is $(x+1)(x-4)$. Hence A.M. $(\lambda)=1=G \cdot M \cdot(\lambda)$ for $\lambda=4,-1$. Hence, A is diagonalizable. For finding P such that $P^{-1} A P$ is diagonal matrix, we find eigenvectors of A. Eigenvectors corresponding to $\lambda=-1$ and 4 are respectively $v_{-1}=(1,-1)$ and $v_{4}=(2,3)$. Since eigenvectors corresponding to distinct eigenvalues are LI, $\{(1,-1),(2,3)\}$ is LI. Construct

$$
P=\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right]
$$

One can see easily $D=P^{-1} A P$, where $D=\left[\begin{array}{cc}-1 & 0 \\ 0 & 4\end{array}\right]$.
Definition 10. Let $T: V \rightarrow V$ be a linear transformation, where V is an n dimensional vector space over \mathbb{F}. Then T is called diagonalizable if V has a basis in which each vector is an eigenvector of T, that is, T has n independent eigenvectors.

Remark 11. Let $V(\mathbb{F})$ is n-dimensional vector space and $T: V \rightarrow V$ be a linear operator. Then 1. if T is diagonalizable and B is a basis of V consisting of eigenvectors, then $[T]_{B}=D$, where D is a diagonal matrix.
2. if T has n distinct eigenvalues, then T is diagonalizable.
3. if $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct eigenvalues of T and $E_{\lambda_{i}}$ are the associated eigenspaces, then T is diagonalizable if and only if $\operatorname{dim} V=\operatorname{dim} E_{\lambda_{1}}+\operatorname{dim} E_{\lambda_{2}}+\cdots+\operatorname{dim} E_{\lambda_{k}}$.

Example: The operator $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(2 x, x+2 y, 4 x+3 z)$ is not diagonalizable.
To see this, we consider the standard basis B of \mathbb{R}^{3} and $[T]_{B}=\left(\begin{array}{ccc}2 & 0 & 0 \\ 1 & 2 & 0 \\ 4 & 0 & 3\end{array}\right)$. The characteristic polynomial is $(x-2)^{2}(x-3)$. Thus $A M(2)=2$ and $A M(3)=1$. $E_{2}=\{(0, x, 0): x \in \mathbb{R}\}$ with $\operatorname{dim} E_{2}=1$ and $E_{3}=\{(0,0, x): x \in \mathbb{R}\}$ with $\operatorname{dim} E_{3}=1$. Here, we get $\operatorname{dim} \mathbb{R}^{3} \neq \operatorname{dim} E_{2}+\operatorname{dim} E_{3}$. Hence, T is not diagonalizable.

Example: Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(-x+2 y+4 z,-2 x+4 y+2 z,-4 x+2 y+7 z)$ is diagonalizable. To see this, we consider the standard basis B of \mathbb{R}^{3} and $[T]_{B}=\left(\begin{array}{ccc}-1 & 2 & 4 \\ -2 & 4 & 2 \\ -4 & 2 & 7\end{array}\right)$. The characteristic polynomial is $\operatorname{det}\left(x I-[T]_{B}\right)=-x^{3}+10 x^{2}-33 x+36=(x-3)^{2}(x-4)$. Thus $A M(3)=2$ and $A M(4)=1$. Solving $\left([T]_{B}-3 I\right) X=0$, we get $(1,0,1),(1,2,0)$ are independent solutions. Hence, $\operatorname{dim} E_{3}=2$ and $\operatorname{dim} E_{4}=1$. Here, we get $\operatorname{dim} \mathbb{R}^{3}=\operatorname{dim} E_{3}+\operatorname{dim} E_{4}$. Hence, T is diagonalizable.

Further, if we want to find a matrix P such that $P^{-1}[T]_{B} P=D$ for some diagonal matrix D. We need to compute a basis of eigen vectors. We have already found eigen vectors corresponding to $\lambda=3$. Now let $\lambda=4$, solving the system $\left([T]_{B}-4 I\right) X=0$, we get $(2,1,2)$ is an eigen vector. The eigen vectors corresponding to distinct eigen values are linearly independent. Hence, $\{(1,0,1),(1,2,0),(2,1,2)\}$ is a basis consisting of eigen vectors. To find P, we will place basis vectors in the column, i.e., $P=\left(\begin{array}{lll}1 & 1 & 2 \\ 0 & 2 & 1 \\ 1 & 0 & 2\end{array}\right)$. The diagonal matrix D is obtained by placing the eigen values on the diagonal in the same order as eigen vectors in P, that is, if the first column of P is corresponding to eigen vector of λ_{1}, the first diagonal entry is going to be λ_{1} and so on. Here, $D=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right)$. Verify yourself that $D=P^{-1}[T]_{B} P$.

