Lecture 14 (Eigenvalue \& Eigenvector)

Definition 1. Let V be a vector space over \mathbb{F} and $T: V \rightarrow V$ be a linear transformation. Then 1. a scalar $\lambda \in \mathbb{F}$ is said to be an eigenvalue or characteristic value of T if there exists a non-zero vector $v \in V$ such that $T v=\lambda v$.
2. a non-zero vector v satisfying $T v=\lambda v$ is called eigenvector or characteristic vector of T associated to the eigenvalue λ.
3. The set $E_{\lambda}=\{v \in V: T v=\lambda v\}$ is called the eigenspace of T associated to the eigenvalue λ.

Example 2. Let V be a non-zero vector space over \mathbb{F}.

1. If T is the zero operator, zero is the only eigenvalue of T.
2. For identity operator, one is the only eigenvalue.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(x, y)=(0, x)$. Then $T(x, y)=\lambda(x, y) \Leftrightarrow(0, x)=(\lambda x, \lambda y) \Leftrightarrow(\lambda x=0, y=$ $\lambda y \Leftrightarrow \lambda=0, x=0, y \neq 0$. Thus, 0 is the eigenvalue of T and $(0,1)$ is an eigenvector corresponding to 0 . 4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(x, y)=(y,-x)$. Then $T(x, y)=\lambda(x, y) \Leftrightarrow(y,-x)=(\lambda x, \lambda y) \Leftrightarrow$ $\left(\lambda^{2}+1\right) x=0 \Leftrightarrow \lambda= \pm i, x \neq 0$. Thus, T has no real eigenvalue.
4. Let $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ given by $T(x, y)=(y,-x)$. Then $T(x, y)=\lambda(x, y) \Leftrightarrow(y,-x)=(\lambda x, \lambda y) \Leftrightarrow$ $\left(\lambda^{2}+1\right) x=0 \Leftrightarrow \lambda= \pm i, x \neq 0$. Thus, T has two complex eigenvalues $\pm i$ and $(1, i)$ is an eigenvector corresponding to i and $(1,-i)$ is an eigenvector corresponding to $-i$.
5. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(x, y)=(2 x+3 y, 3 x+2 y)$. To find $\lambda \in \mathbb{R}$ and $(x, y) \in \mathbb{R}^{2}$ such that $(2 x+3 y, 3 x+2 y)=\lambda(x, y)$ or $(2-\lambda) x+3 y=0,3 x+(2-\lambda) y=0$. The system of linear equations has a non-zero solution if and only if the determinant of the coefficient matrix, $\operatorname{det}\left(\begin{array}{cc}2-\lambda & 3 \\ 3 & 2-\lambda\end{array}\right)=0$ or $\lambda=-1,5$. When $\lambda=1,3 x+3 y=0$ so that $(1,-1)$ is an eigenvector $((-a, a)$ are eigenvectors of corresponding to eigenvalue - 1 for every $a \neq 0$). For $\lambda=5,3 x-3 y=0$ so that $(1,1)$ is an eigenvector (in fact, (a, a) is an eigenvector corresponding to eigenvalue 5 for $a \neq 0$).

Theorem 3. Let T be a linear operator on a finite-dimensional vector space $V(\mathbb{F})$ and $\lambda \in \mathbb{F}$. The following statements are equivalent.

1. λ is an eigenvalue of T.
2. The operator $T-\lambda I$ is singular (not invertible).
3. $\operatorname{det}[(T-\lambda I)]_{B}=0$, where B is an ordered basis of V.

Proof. A linear transformation T is singular if and only if $\operatorname{ker}(T) \neq\{0\}$. Thus, (1) $\Longleftrightarrow(2)$. if $V(\mathbb{F})$ is finite-dimensional, then the eigenvalues and eigenvectors of T can be determined by its matrix representation $[T]_{B}$ with respect to a basis B. A scalar λ is an eigenvalue of $T \Leftrightarrow T v=\lambda v \Leftrightarrow$ $[T]_{B}[v]_{B}=\lambda[v]_{B} \Leftrightarrow\left([T]_{B}-\lambda I\right)[v]_{B}=0$ for non zero v. Thus, $(3) \Leftrightarrow(1)$.

Definition 4. Let $A \in M_{n}(\mathbb{F})$. A scalar $\lambda \in \mathbb{F}$ is said to be an eigenvalue of A if there exists a non-zero vector $x \in \mathbb{F}^{n}$ such that $A x=\lambda x$. Such a non-zero vector x is called an eigenvector of A associated to the eigenvalue λ.

Let $A \in M_{n}(\mathbb{F})$. Observe, $\operatorname{det}(x I-A)$ is an n degree polynomial in x over \mathbb{F}. A scalar λ is an eigenvalue of $A \Leftrightarrow \operatorname{det}(A-\lambda I)=0$ or $\operatorname{det}(\lambda I-A)=0$.

Definition 5. Let $A \in M_{n}(\mathbb{F})$. Then the polynomial $f(x)=\operatorname{det}(x I-A)$ is called the characteristic polynomial of A. The equation $\operatorname{det}(x I-A)=0$ is called the characteristic equation of A.

Theorem 6. A scalar $\lambda \in \mathbb{C}$ is an eigenvalue if and only if λ is a root of the characteristic polynomial of A.
Example 7. Let $A=\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$. The characteristic polynomial of A is $\operatorname{det}\left(\begin{array}{ccc}x-1 & -1 & 0 \\ 0 & x-1 & -1 \\ -1 & 0 & x-1\end{array}\right)$, that is, $x^{3}-3 x^{2}+3 x-2=(x-2)\left(x^{2}-x+1\right)$. Thus, the roots are $\lambda=2, \frac{1 \pm \sqrt{3} i}{2}$. If $\mathbb{F}=\mathbb{R}$, the only eigenvalue of A is 2 and if $\mathbb{F}=\mathbb{C}$, the eigenvalues are $2, \frac{1 \pm \sqrt{3} i}{2}$. We leave it to the reader to find the corresponding eigenvectors over the field \mathbb{C}. In this example, we see that a real matrix over \mathbb{C} may have complex eigenvalues.

Example 8. Consider a matrix $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. The characteristic polynomial is $x^{2}+1$ and the roots are $\pm i$. Thus, A has no eigenvalue over \mathbb{R} and two eigenvalues over \mathbb{C}. Note that, the existence of eigenvalue depends on the field.

Properties of eigenvalue and eigenvector

1. Let $A \in M_{n}(\mathbb{C})$. Then the sum of eigenvalues is equal to the trace of the matrix and the product of eigenvalues is equal to the determinant of the matrix.

Let

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

Then the characteristic polynomial of A is $f(\lambda)=|\lambda I-A|=a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n}$ with roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Then $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}=-\frac{a_{1}}{a_{0}}$ and $\lambda_{1} \lambda_{2} \ldots \lambda_{n}=(-1)^{n} \frac{a_{n}}{a_{0}}$.

Note that $a_{0}=1, f(0)=a_{n}=|-A|=(-1)^{n}|A|$ and $a_{1}=-\left(a_{11}+a_{22}+\ldots+a_{n n}\right)$. Therefore, $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}=-\frac{a_{1}}{a_{0}}=\left(a_{11}+a_{22}+\ldots+a_{n n}\right)=\operatorname{trace}(A)$ and $\lambda_{1} \lambda_{2} \ldots \lambda_{n}=(-1)^{n} \frac{a_{n}}{a_{0}}=|A|=$ $\operatorname{det}(A)$.
2. If A is a non-singular matrix and λ is any eigenvalue of A, then λ^{-1} is an eigenvalue of A^{-1}.

Let λ be an eigenvalue of A, then there exists $0 \neq x \in \mathbb{F}^{n}$ such that $A x=\lambda x \Leftrightarrow A^{-1} x=\frac{1}{\lambda} x$.
3. A and and A^{T} have the same eigenvalues.

It is enough to show that A and A^{T} have the same characteristic polynomials. The characteristic polynomial of A is $|\lambda I-A|=\left|(\lambda I-A)^{T}\right|=\left|\lambda I-A^{T}\right|=$ characteristic polynomial of A^{T}.
4. Similar matrices have the same eigenvalues (or characteristic equations).

Let A and B are two matrices which are similar then there exists an invertible matrix P such that $A=P^{-1} B P$. Then characteristic polynomial of A is $|\lambda I-A|=\left|\lambda I-P^{-1} B P\right|=\left|P^{-1}(\lambda I-B) P\right|=$ $|\lambda I-B|$.
5. If λ is an eigenvalue of A, then λ^{k} is an eigenvalue of A^{k} for a positive integer k.
6. Let $\mu \in \mathbb{F}$ and $A \in M_{n}(\mathbb{F})$. Then $\lambda \in \mathbb{F}$ is an eigenvalue of A if and only if $\lambda \pm \mu$ is eigenvalue of $A \pm \mu I$.

