Rank of a matrix \& System of linear equations

Definition 1. Let $A \in M_{m \times n}(\mathbb{F})$. The column space of A is the linear span of columns of A, i.e., column $\operatorname{space}(A)=L\left(\left\{\left(a_{11}, a_{21}, \ldots, a_{m 1}\right), \ldots,\left(a_{1 n}, a_{2 n}, \ldots, a_{m n}\right)\right\}\right) \subseteq \mathbb{F}^{m}$, and the row space of A is the linear span of the rows of A, i.e., the row $\operatorname{space}(A)=L\left(\left\{\left(a_{11}, a_{12}, \ldots, a_{1 n}\right), \ldots,\left(a_{1 n}, a_{2 n}\right.\right.\right.$, $\left.\left.\ldots, a_{m n}\right\}\right) \subseteq \mathbb{F}^{n}$. The dimension of the column space of (A) is called the column rank of A and dimension of the row space of (A) is called the row rank of A.

Theorem 2. Let $A \in M_{m \times n}(\mathbb{F})$. Then Row $\operatorname{rank}(A)=\operatorname{Column} \operatorname{rank}(A)$.
Proof: Let $R_{1}, R_{2}, \ldots, R_{m}$ be the rows of A. Then the $i^{\text {th }}$ vector $R_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$. Suppose dimension of the row space of A is s and $\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$ is a basis of the row space of A. Then

$$
\begin{aligned}
R_{1} & =c_{11} v_{1}+c_{12} v_{2}+\ldots+c_{1 s} v_{s} \\
R_{2} & =c_{21} v_{1}+c_{22} v_{2}+\ldots+c_{2 s} v_{s} \\
\vdots & \\
R_{m} & =c_{m 1} v_{1}+c_{m 2} v_{2}+\ldots+c_{m s} v_{s}
\end{aligned}
$$

Let $v_{j}=\left(b_{j 1}, b_{j 2}, \ldots, b_{j n}\right)$ for $1 \leq j \leq s$. Then $a_{1 i}=c_{11} b_{1 i}+c_{12} b_{2 i}+c_{1 s} b_{s i}, a_{2 i}=c_{21} b_{1 i}+c_{22} b_{2 i}+$ $c_{2 s} b_{s i}, \ldots, a_{m i}=c_{m 1} b_{1 i}+c_{m 2} b_{2 i}+c_{m s} b_{s i}$. This implies, $\left(a_{1 i}, a_{2 i}, \ldots, a_{m i}\right)=b_{1 i}\left(c_{11}, c_{21}, \ldots, c_{m 1}\right)+$ $\ldots+b_{s i}\left(c_{1 s}, c_{2 s}, c_{m s}\right)$. Thus, each column vector is a linear combination of s vectors $\left\{\left(c_{11}, c_{21}, \ldots\right.\right.$, $\left.\left.c_{m 1}\right),\left(c_{12}, c_{22}, \ldots, c_{m 2}\right), \ldots,\left(c_{1 s}, c_{2 s}, \ldots, c_{m s}\right)\right\}$. Therefore, $\operatorname{dim}($ column space $) \leq s=\operatorname{dim}($ row space $)$. Similarly, we can show that dim (row space) $\leq s=\operatorname{dim}$ (column space).

Definition 3. The rank of a matrix A is the dimension of row space of A (or the dimension of column space of A).

Definition 4. The nullity of a matrix A is the dimension of the solution space of $A x=0$.
Theorem 5 (Rank-Nullity Theorem for a Matrix). Let $A \in M_{m \times n}(\mathbb{R})$. Then

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=\text { number of columns of } A \text {. }
$$

Proof. Recall that there is a one to one correspondence between $L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ and $M_{m \times n}(\mathbb{R})$. Consider the map ϕ such that $T \mapsto[T]_{B}^{B^{\prime}}$, where B and B^{\prime} be the standard bases for \mathbb{R}^{n} and \mathbb{R}^{m} respectively. Then ϕ is linear one-one and onto. For onto, given a matrix A, take the linear transformation T_{A} given by $T_{A}(x)=A x$.

Remark 6. 1. The rank of a matrix A is same as the number of non-zero rows in its RRE form.

Proof. Let the number of non zero rows in the RRE form of A is r. Observe that a row obtained by applying an elementary row operation is nothing but a linear combination of rows of the matrix, and the rows in RRE form are LI. Therefore, the dimension of row space or rank of A is r.

Determinantal-Rank of a matrix

Let $A \in M_{m \times n}(\mathbb{R})$. Then A has determinantal-rank r if

1. every $k \times k$ submatrix of A has zero determinant, where $k>r$;
2.there exist an $r \times r$ submatrix with non-zero determinant.

Theorem 7. $\operatorname{Rank}(A)=$ Determinantal $\operatorname{Rank}(A)$.

Proof. Let $\operatorname{rank}(A)=l$ and determinantal- $\operatorname{rank}(A)=r$. We show that $r=l$. Since determinantal$\operatorname{rank}(A)=r$, there exists an $r \times r$ submatrix R with non-zero determinant so that $\operatorname{rank}(R)=r$, equivalently, all rows of R are linearly independent. Then the corresponding rows of matrix A are LI. Therefore, $r \leq \operatorname{rank}(A)$.

Let B be a submatrix of A consisting of linearly independent rows of A. Let $\operatorname{rank}(A)=l$. Then order of B is $l \times n$ and $\operatorname{rank}(B)$ is l. Hence, B has l linearly independent columns. Consider an $l \times l$ submatrix B^{\prime} of B (also a submatrix of A) having those l linearly independent columnsof B. Then $\operatorname{rank}\left(B^{\prime}\right)=l$ so that $\left|B^{\prime}\right| \neq 0$. Therefore, $l \leq r$.

Application of rank in system of linear equations

First we recall a result on system of linear equation:
Theorem 8. Let $A x=b$ be a non-homogeneous system of linear equations, and $A x=0$ be the associated homogeneous system. If $A x=b$ is consistent and x_{0} is a particular solution of $A x=b$, then any solution of $A x=b$ can be written as $x=x_{h}+x_{0}$, where x_{h} is a solution of $A x=0$.

Let $A \in M_{m \times n}(\mathbb{R})$ and $\operatorname{Rank}(A)=r$. Suppose $A x=b$ is a non-homogeneous system of linear equations, and $A x=0$ is the associated homogeneous system. Then

1. $A x=b$ is consistent if and only if $\operatorname{Rank}(A \mid b)=r$.

Solution: If $A x=b$ is consistent, then $b \in \operatorname{Column} \operatorname{Space}(A)$ so that $\operatorname{Rank}(A \mid b)=r$. Similarly, the other way.
2. Let $A x=b$ be consistent. Then the solution is unique if and only if $r=n$.

Solution: Let $A x=b$ have a unique solution. Then $A x=0$ has a unique solution, i.e., the zero solution. This implies nullity $(A)=0$. Then by rank-nullity theorem, we have $n=\operatorname{rank}(A)$ and vice-versa.
3. If $r=m$, then $A x=b$ always has a solution for every $b \in \mathbb{R}^{m}$.

Solution: If $r=m$, then the column space is \mathbb{R}^{m}. Thus each vector in \mathbb{R}^{m} is a linear combination of columns of A. Hence, $A x=b$ has a solution for all $b \in \mathbb{R}^{m}$.
4. If $r=m=n$ then $A x=b$ always has a unique solution for all b and further $A x=0$ has only zero solution.

Solution: Since $r=m$, the column space is \mathbb{R}^{m}. Therefore, $A x=b$ always has a solution for all b. Further, $\operatorname{nullity}(A)=0$. Thus, $A x=0$ has only zero solution and hence, $A x=b$ always has a unique solution all b.
5. If $r=m<n$, for any $b \in \mathbb{R}^{m}, A x=b$ as well as $A x=0$ have infinitely many solutions.

Solution: Since $r=m, A x=b$ has a solution for all $b \in \mathbb{R}^{m}$. Note that, $\operatorname{nullity}(A)=(n-r)>0$. Therefore, $A x=0$ has infinitely many solutions and hence, $A x=b$ has infinitely many solutions.
6. In case (i) $r<m=n$, (ii) $r<m<n$ and (iii) $r<n<m$, if $A x=b$ has a solution then there are infinitely many solutions.
Solution: Note that nullity $(A)=(n-r)>0$. Hence $A x=0$ has infinitely many solutions. Now if $A x=b$ has a solutions then it has infinitely many solutions.
7. If $r=n<m$, then $A x=0$ has only zero solution and if $A x=b$ has a solution, the solution is unique.

Solution: In this case, $\operatorname{nullity}(A)=0$, implies $A x=0$ has only trivial solution. If $A x=b$ has a solution, then it is unique.

Example 9. Let $T: P_{2}(\mathbb{R}) \Rightarrow \mathbb{R}^{2}$ given by $T(p(x))=(p(0), p(1))$. Find $\operatorname{rank}(T)$, $\operatorname{nullity}(T)$, basis of $\operatorname{ker}(T)$ and basis range (T).

Solution: Let $B=\left\{1, x, x^{2}\right\}$ and $B^{\prime}=\left\{e_{1}, e_{2}\right\}$. Then

$$
[T]_{B}^{B^{\prime}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right)=A
$$

$\operatorname{RRE}(A)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right)$. Thus, $\operatorname{Rank}(T)=\operatorname{Rank}(A)=2$ so that range of T is \mathbb{R}^{2} and its basis is $\left\{e_{1}, e_{2}\right\}$. Further, $\operatorname{nullity}(T)=\operatorname{nullity}(A)=\operatorname{nullity}(R R E(A))=3-2=1$. The solution space of $A y=0$ is $\{(0, a,-a) \mid a \in \mathbb{R}\}$. Note that $y=[v]_{B}$, therefore, the $\operatorname{ker}(T)=\left\{a x+(-a) x^{2} \mid a \in \mathbb{R}\right\}$. Hence, basis of kernel T is $\left\{x-x^{2}\right\}$.

