Lecture 12

Matrix Representation of a Linear Transformation & Similar Matrices

Definition 1. Let $B_1 = \{v_1, v_2, \ldots, v_n\}$ and $B_2 = \{u_1, \ldots, u_n\}$ be ordered bases of a vector space V over \mathbb{F} . Then the matrix $P_{B_1 \mapsto B_2}$ having the *i*-th $(1 \le i \le n)$ column as the coordinate vector of v_i with respect to the basis B_2 , that is,

$$P_{B_1 \mapsto B_2} = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix},$$

where $[v_i]_{B_2} = (p_{1i}, p_{2i}, \dots, p_{ni})^T$, is called the transition matrix from the basis B_1 to the basis B_2 . **Theorem 2.** Let $B_1 = \{v_1, \dots, v_n\}$ and $B_2 = \{u_1, \dots, u_n\}$ be ordered bases of a vector space V over \mathbb{F} . If v is a vector in V, then $[v]_{B_2} = P_{B_1 \mapsto B_2}[v]_{B_1}$, where $P_{B_1 \mapsto B_2}$ is the transition matrix from B_1 to B_2 .

Proof: Let $[v]_{B_1} = (a_1, a_2, \ldots, a_n)^T$. Then $v = a_1v_1 + \ldots + a_nv_n$. We know $[v_i]_{B_2} = P_i$, where $i = 1, \ldots, n$ and P_i is the *i*-th column of $P_{B_1 \mapsto B_2}$. Thus, $v_1 = p_{11}u_1 + \ldots + p_{n1}u_n$, $v_2 = p_{12}u_1 + \ldots + p_{n2}u_n$, $\ldots, v_n = p_{1n}u_1 + \ldots + p_{nn}u_n$, where p_{ij} is the (i, j)-th entry of $P_{B_1 \mapsto B_2}$. Putting these value in (1), we get $v = (a_1p_{11} + a_2p_{12} + \cdots + a_np_{p1n})u_1 + \cdots + (a_1p_{n1} + a_2p_{n1} + \cdots + a_np_{nn})u_n$. Therefore, $[v]_{B_2} = P_{B_1 \mapsto B_2}[v]_{B_1}$.

Theorem 3. A transition matrix is invertible.

Proof: Let V be a vector space over \mathbb{F} and B_1 and B_2 are bases of V. For $v \in V$, $P_{B_1 \mapsto B_2}[v]_{B_1} = [v]_{B_2}$. Let $P_{B_2 \mapsto B_1}$ be the transition matrix from basis B_2 to B_1 . Then $P_{B_1 \mapsto B_2} P_{B_1 \mapsto B_2}[v]_{B_1} = P_{B_1 \mapsto B_2}[v]_{B_2} = [v]_{B_1}$. Thus, $P_{B_1 \mapsto B_2}$ is invertible (using Exercise: If a square matrix has a left inverse, then it is invertible). **Example 4.** Let $B_1 = \{(1, 1), (1, -1)\}$ and $B' = \{(1, 2), (2, 1)\}$ be bases of $\mathbb{R}^2(\mathbb{R})$. Then

$$P_{B_1 \mapsto B_2} = \begin{pmatrix} \frac{1}{3} & -1 \\ \frac{1}{3} & 1 \end{pmatrix}$$
 and $P_{B_2 \mapsto B_1} = \begin{pmatrix} \frac{3}{2} & \frac{3}{2} \\ \frac{-1}{2} & \frac{1}{2} \end{pmatrix}$.

Let $(x,y) \in \mathbb{R}^2$. Then $[(x,y)]_{B_1} = (\frac{x+y}{2}, \frac{x-y}{2})^t$ and $[(x,y)]_{B_2} = (\frac{2y-x}{3}, \frac{2x-y}{3})^t$. Verify that $[(x,y)]_{B_2} = P_{B_1 \mapsto B_2}[(x,y)]_{B_1}$ and $[(x,y)]_{B_1} = P_{B_2 \mapsto B_1}[(x,y)]_{B_2}$. Also, $P_{B_1 \mapsto B_2}$ is inverse of $P_{B_2 \mapsto B_1}$.

Matrix representation of a linear transformation: Let V and W be vector spaces over \mathbb{F} with ordered bases $B_V = \{v_1, v_2, \ldots, v_m\}$ and $B_W = \{w_1, w_2, \ldots, w_n\}$ respectively. Let $T: V \to W$ be a linear transformation. Then

$$T(v_j) = \sum_{i=1}^m \alpha_{ij} w_i \text{ for } (1 \le j \le m),$$

where $\alpha_{ij} \in \mathbb{F}$ and we get an $n \times m$ matrix M_T given by

$$M_T = \alpha_{ij},$$

that is, the *i*-th column of M_T is the coordinate vector $[T(v_i)]_{B_W}$. The matrix M_T is called the **matrix** representation of T with respect to the bases B_V and B_W . Since the coordinate vectors are unique, M_T is also unique. We also denote the matrix representation of T with respect to B_V and B_W by $[T]_{B_V}^{B_W}$. If T is an operator $(T: V \to V)$ and both the bases are identical, then we simply write $[T]_B$.

Theorem 5. Let $v \in V$. Then $[T(v)]_{B_W} = [T]_{B_V}^{B_W} [v]_{B_V}$.

Example 6. 1. Let the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ be defined by T(x, y, z) = (2x + z, y + 3z)with $B = \{(1, 1, 0), (1, 0, 1), (1, 1, 1)\}$ and $B' = \{(2, 3), (3, 2)\}$. Then

$$T(1,1,0) = (2,1) = \frac{-1}{5}(2,3) + \frac{4}{5}(3,2)$$
$$T(1,0,1) = (3,3) = \frac{3}{5}(2,3) + \frac{3}{5}(3,2)$$
$$T(1,1,1) = (3,4) = \frac{6}{5}(2,3) + \frac{1}{5}(3,2)$$

Thus, the matrix representation of T with respect to B and B' is

$$\begin{pmatrix} -\frac{1}{5} & \frac{3}{5} & \frac{6}{5} \\ \frac{4}{5} & \frac{3}{5} & \frac{1}{5} \end{pmatrix}.$$

2. Let $D: P_2 \longrightarrow P_1$ be the differential operator. Find the matrix representations of D from $B = \{1, x, x^2\}$ to $B' = \{1, 1 + x\}$.

$$D(1) = 0 = 0(1) + 0(1 + x)$$
$$D(x) = 1 = 1(1) + 0(1 + x)$$
$$D(x^{2}) = 2x = -2(1) + 2(1 + x)$$
$$[D]_{B}^{B'} = \begin{pmatrix} 0 & 1 & -2 \\ 0 & 0 & 2 \end{pmatrix}.$$

Definition 7. Let $A, B \in M_n(\mathbb{F})$. Then A and B are said to be similar if there exist an invertible matrix $P \in M_n(\mathbb{F})$ such that $A = P^{-1}BP$.

Theorem 8. Let $V(\mathbb{F})$ be a vector space with ordered bases B and B'. Let T be a linear operator on V (that is, $T: V \to V$). If $[T]_B = A$ and $[T]_{B'} = A'$, then $A' = P^{-1}AP$, where P is the transition matrix from B' to B.

Proof: Let $v \in V$. Then $[T(v)]_B = A[v]_B$ and $[T(v)]_{B'} = A'[v]_{B'}$. We know that $P[v]_{B'} = [v]_B$

so that $P([T(v)]_{B'}) = [T(v)]_B = A[v]_B$. Also, $P([T(v)]_{B'}) = P(A'[v]_{B'}) = P(A'P^{-1}[v]_B)$. Therefore, $A[v]_B = PA'P^{-1}[v]_B \ \forall [v]_B$. Hence, $A = PA'P^{-1}$ or $A' = P^{-1}AP$.

Theorem 9. Let $V(\mathbb{F})$ and $W(\mathbb{F})$ be vector spaces. Suppose B_1 , B'_1 are bases for V and B_2 , B'_2 are ordered bases for W. Then for any linear map $T: V \longrightarrow W$,

$$[T]_{B_1'}^{B_2'} = Q[T]_{B_1}^{B_2} P_2$$

where $P = P_{B'_1 \to B_1}$ and $Q = Q_{B_2 \to B'_2}$.

Example 10. Consider Example 6 (1), let $B_1 = \{(1,0,0), (0,1,0), (0,0,1)\}, B'_1 = \{(1,1,0), (1,0,1), (1,1,1)\}$ and $B_2 = \{(1,0), (0,1)\}$. and $B'_2 = \{(2,3), (3,2)\}$. Then

$$[T]_{B_1}^{B_2} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 3 \end{pmatrix} \text{ and } [T]_{B_1'}^{B_2'} = \begin{pmatrix} -\frac{1}{5} & \frac{3}{5} & \frac{6}{5} \\ \frac{4}{5} & \frac{3}{5} & \frac{1}{5} \end{pmatrix}.$$

The transition matrices

$$P = P_{B_1' \mapsto B_1} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \text{ and } Q = Q_{B_2 \mapsto B_2'} = \begin{pmatrix} \frac{-2}{5} & \frac{3}{5} \\ \frac{3}{5} & \frac{-2}{5} \end{pmatrix}.$$

Verify that $[T]_{B'_1}^{B'_2} = Q[T]_{B_1}^{B_2} P.$