Rank-Nullity theorem \& Vector Space Isomorphism

Theorem 1. Rank-Nullity Theorem: Let V and W be vector spaces over the field \mathbb{F} and let $T: V \rightarrow$ W be a linear map. If V is finite dimensional then, $\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim}(V)$.

Proof: Since $\operatorname{Ker}(T)$ is a subspace of V, its dimension is finite, say n. Let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for $\operatorname{Ker}(T)$. Then B can be enlarged to form a basis for V. Let $B^{\prime}=\left\{v_{1}, \ldots, v_{n}, v_{n+1}, \ldots, v_{m}\right\}$ be a basis for V. Now claim that the set $S=\left\{T\left(v_{n+1}\right), \ldots, T\left(v_{m}\right)\right\}$ forms a basis for $\operatorname{Range}(T)$. Let $v \in V$. Then $v=\alpha_{1} v_{1}+\ldots+\alpha_{m} v_{m}$, this implies $T(v)=\alpha_{n+1} T\left(v_{n+1}\right)+\ldots+\alpha_{m} T\left(v_{m}\right)$. Thus $L(S)=$ $\operatorname{Range}(T)$. To show that S is linearly independent, assume that $\alpha_{n+1} T\left(v_{n+1}\right)+\ldots+\alpha_{m} T\left(v_{m}\right)=0$. Then $T\left(\alpha_{n+1} v_{n+1}+\ldots+\alpha_{m} v_{m}\right)=0$ so that $\alpha_{n+1} v_{n+1}+\ldots+\alpha_{m} v_{m} \in \operatorname{Ker}(T)$. Therefore, $\alpha_{n+1} v_{n+1}+\ldots+\alpha_{m} v_{m}=$ $\beta_{1} v_{1}+\ldots+\beta_{n} v_{n}$ or $\sum_{i=1}^{n} \beta_{i} v_{i}+\sum_{i=n+1}^{m} \alpha_{i} v_{i}=0$. But B^{\prime} is a basis for V. Therefore, $\alpha_{i}=0$ and hence, S is linearly independent.

Recall that a function $f: X \rightarrow Y$ is invertible if there exits a function $g: Y \rightarrow X$ such that $f \circ g=I_{Y}$ and $g \circ f=I_{X}$. Furthermore, a function f is invertible if and only if it is one-one and onto, and the inverse function g is given by $g(y)=f^{-1}(y)$.

Theorem 2. Let $T: V \rightarrow W$ be a linear map. If T is invertible, then the inverse map T^{-1} is linear.
Proof: Suppose $T: V \longrightarrow W$ is invertible. Then T is one-one and onto. Let T^{-1} denote the inverse of T. We want to show that $T^{-1}\left(\alpha w_{1}+\beta w_{2}\right)=\alpha T^{-1}\left(w_{1}\right)+\beta T^{-1}\left(w_{2}\right)$. Let $T^{-1}\left(w_{1}\right)=v_{1}$ and $T^{-1}\left(w_{2}\right)=v_{2}$. Then $T\left(\alpha v_{1}+\beta v_{2}\right)=\alpha w_{1}+\beta w_{2}$. Since T is one-one, $T^{-1}\left(\alpha w_{1}+\beta w_{2}\right)=\alpha v_{1}+\beta v_{2}=\alpha T^{-1}\left(w_{1}\right)+\beta T^{-1}\left(w_{2}\right)$.

Definition 3. A linear map $T: V \rightarrow W$ is said to be non-singular if $\operatorname{Ker}(\mathrm{T})=\{0\}$.
Theorem 4. A linear map $T: V \rightarrow W$ is non-singular if and only if T is one-one.
Proof: Let T is non-singular. If $T(x)=T(y)$, then $T(x-y)=0$. This implies $x-y \in \operatorname{Ker}(T)=\{0\}$. So $x=y$. Conversely, let $x \in \operatorname{Ker}(T)$. Then $T(x)=0=T(0)$, as T is one one. So $x=0$.

Theorem 5. Let V and W be finite-dimensional vector spaces over the field \mathbb{F} such that $\operatorname{dim} V=\operatorname{dim} W$. If T is a linear transformation from V to W, the following are equivalent:
(i) T is invertible.
(ii) T is non-singular.
(iii) T is onto, that is, the range of T is W.

Definition 6. Let V and W be vector spaces over the field \mathbb{F}. An invertible linear transformation from V to W is called an isomorphism. If there exists an isomorphism from V to W, we say that V and W are isomorphic.

Exercise 1. Show that isomorphism is an equivalence relation on finite dimensional vector spaces over the field \mathbb{F}.

Example 7. Show that $\mathbb{R}^{2}(\mathbb{R})$ and $\mathbb{C}(\mathbb{R})$ are isomorphic.
Solution: Define $T: \mathbb{R}^{2} \rightarrow \mathbb{C}$ as $T(x, y)=x+i y$. Then T is linear and $\operatorname{Ker}(T)=\left\{(x, y) \in \mathbb{R}^{2} \mid\right.$ $x+i y=0+0 i\}=\{(0,0)\}$. Hence, T is one-one. Note that $\operatorname{dim} \mathbb{R}^{2}=\operatorname{dim} \mathbb{C}=2$ over \mathbb{R}. By rank-nullity theorem, the map is onto.

Definition 8. Let V be a vector space of dimension n. A basis B is called an ordered basis if there is an one to one map between B and the set $\{1, \ldots, n\}$. In simple words, a basis B with an ordering of the elements (of B) is called an ordered basis.

Definition 9. Let V be a vector space with an ordered basis $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ over the field \mathbb{F}. Then for any $v \in V$ there exists a unique $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{F}^{n}$ such that $v=a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}$. Then the column vector $\left(a_{1}, \ldots, a_{n}\right)^{T}$, denoted as $[v]_{B}$, is called the coordinate vector of v with respect to the basis B.

For example, in \mathbb{F}^{n} the coordinate vector of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with respect to the standard basis $\left\{e_{1}, \ldots, e_{n}\right\}$ is $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$. Consider \mathbb{R}^{2} with the basis $B=\{(1,1),(1,-1)\}$. Let $v=(x, y)$. Then $(x, y)=$ $a_{1}(1,1)+a_{2}(1,-1)$ if and only if $a_{1}=\frac{x+y}{2}$ and $a_{2}=\frac{x-y}{2}$. Hence, $[(x, y)]_{B}=\left(\frac{x+y}{2}, \frac{x-y}{2}\right)^{T}=\binom{\frac{x+y}{2}}{\frac{x-y}{2}}$. Consider another basis $B^{\prime}=\{(1,2),(2,1)\}$. Then $[(x, y)]_{B^{\prime}}=\binom{\frac{2 y-x}{3}}{\frac{2 x-y}{3}}$. Thus, the coordinate vector of a vector depends on the basis and it changes with a change of basis.

Theorem 10. Let V be an n-dimensional vector space over \mathbb{F}. Then $V \cong \mathbb{F}^{n}$.
Proof: Let $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be an ordered basis of $V(\mathbb{F})$. The map $T: V \rightarrow \mathbb{F}^{n}$ given by $T(v)=[v]_{B}$ is an isomorphism. First we show that T is linear. Let $v, v^{\prime} \in V$ with $[v]_{B}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{T}$ and $\left[v^{\prime}\right]_{B}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)^{T}$. Then $\alpha v+\beta v^{\prime}=\left(\alpha a_{1}+\beta b_{1}\right) v_{1}+\cdots+\left(\alpha a_{n}+\beta b_{n}\right) v_{n}$ so that $\left[\left(\alpha v+\beta v^{\prime}\right)\right]_{B}=$ $\left(\alpha a_{1}+\beta b_{1}, \ldots, \alpha a_{n}+\beta b_{n}\right)^{T}=\alpha\left(a_{1}, \ldots, a_{n}\right)^{T}+\beta\left(b_{1}, \ldots, b_{n}\right)^{T}=\alpha T(v)+\beta T\left(v^{\prime}\right)$. Now $\operatorname{ker}(T)=\{v \mid$ $T(v)=0\}=\left\{v \mid[v]_{B}=0\right\}=\{0\}$. Thus T is one-one and onto (rank-nullity theorem).

Corollary 11. Two finite-dimensional vector spaces V and W over the field \mathbb{F} are isomorphic if and only if $\operatorname{dim}(V)=\operatorname{dim}(W)$.

