Lecture 10

Linear Transformation

Definition 1. Let V and W be vector spaces over field \mathbb{F}. A map $T: V \rightarrow W$ is said to be a linear map (or linear transformation) if for $\forall \alpha \in \mathbb{F}$ and $\forall v_{1}, v_{2} \in V$ we have:
(i) $T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)$, (ii) $T(\alpha v)=\alpha T(v)$.

Example 2. 1. The map $T: V \rightarrow W$ defined by $T(v)=0$ for all $v \in V$, is linear (the zero map).
2. The map $T: V \rightarrow V$ defined by $T(v)=v$ for all $v \in V$, is linear (the identity map).
3. Let $m \leq n$. Then a map $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, defined by $T\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{m}, 0, \ldots, 0\right),(n-m)$ zeroes, is linear (the inclusion map).
4. Let $m \geq n$. Then a map $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ defined by $T\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, is linear (the projection map).
5. A map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1},-x_{2}\right)$, is linear (reflection along x-axis).
6. A map $T_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T_{\theta}(x, y)=(x \cos \theta+y \sin \theta,-x \sin \theta+y \cos \theta)$, is linear (rotation about origin with angle θ.
7. Let A be a matrix of order $m \times n$. Then A defines a linear map $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $T_{A}(x)=A x$.
8. Let $D: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ defined by $D(f(x))=\frac{d}{d x} f(x)$. Then D is linear (differentiation map).

Proposition 3. Let $T: V \rightarrow W$ be a linear map. Then
(i) $T(0)=0$; (ii) $T(-v)=-T(v)$; (iii) $T\left(v_{1}-v_{2}\right)=T\left(v_{1}\right)-T\left(v_{2}\right)$.

Definition 4. Let $T: V \rightarrow W$ be a linear map. Then the null space (or kernel) of $T=\{v \in V: T(v)=$ $0\}$, denoted as $\operatorname{ker}(T)$ and Range space (or Image) of $T=\{T(v): v \in V\}$ denoted as Range (T).

Example 5. 1. If $T: V \longrightarrow W$ is the zero map, then $\operatorname{ker}(T)=V$ and $\operatorname{Range}(T)=\{0\}$.
2. If $T: V \longrightarrow V$ is the identity map, then $\operatorname{ker}(T)=\{0\}$ and $\operatorname{Range}(T)=V$.
3. If $T: P_{n}(\mathbb{R}) \longrightarrow P_{n}(\mathbb{R})$ defined by $T(f(x))=\frac{d}{d x}(f(x))$, then $\operatorname{ker}(T)$ contains all constant polynomials and $\operatorname{Range}(T)=P_{n-1}(\mathbb{R})$.

Theorem 6. Let $T: V \rightarrow W$ be a linear map. Then $\operatorname{ker}(T)$ and $\operatorname{Range}(T)$ are subspaces of V and W respectively. (Prove it yourself!)

Definition 7. The dimension of null space $\operatorname{Ker}(T)$ is called the nullity of T and the dimension of the range space Range (T) of T is called the rank of T.

Theorem 8. Let V be a finite-dimensional vector space over the field \mathbb{F} and let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V. Let W be a vector space over the same field \mathbb{F} and let $w_{1}, w_{2}, \ldots, w_{n}$ be any vectors in W. Then there is precisely one linear transformation T from V to W such that $T\left(v_{i}\right)=w_{i} \forall i=1, \ldots, n$, and it is given by $T(v)=\alpha_{1} T\left(v_{1}\right)+\cdots+\alpha_{n} T\left(v_{n}\right)$, where $v=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{F}$.

Theorem 9. Let $T: V \rightarrow W$ be a linear map and $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis for V. Then the T is completely determined by its images on basis elements and $\operatorname{Range}(T)=L\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)\right\}\right)$.

Proof: Let $v \in V$. Then $v=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}$ for some $\alpha_{i} \in \mathbb{F}$ and $i=1, \ldots, n$. The map T is linear, $T(v)=T\left(\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}\right)=\alpha_{1} T\left(v_{1}\right)+\cdots+\alpha_{n} T\left(v_{n}\right)$, that is, image of any vector is a linear combination of images of basis vectors. Thus, Range $(T)=\{T(v): v \in V\}=\left\{\alpha_{1} T\left(v_{1}\right)+\cdots+\alpha_{n} T\left(v_{n}\right)\right.$: $\left.v_{1}, v_{2}, \ldots, v_{n} \in B, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{F}\right\}=L\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)\right\}\right)$.

Corollary 10. (Riesz Representation Theorem) Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a linear map. Then there exist $a \in \mathbb{R}^{n}$ such that $T(x)=a^{t} x$.

Proof: Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis of \mathbb{R}^{n}. Then $T(x)=$ $T\left(\sum_{i=1}^{n} x_{i} e_{i}\right)=\sum_{i=1}^{n} x_{i} T\left(e_{i}\right)$. Let $T\left(e_{i}\right)=a_{i}$. Thus $T(x)=a^{T} x$, where $a=\left(a_{1}, \ldots, a_{n}\right)$.

Example 11. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(x+y-z, x-y+z, y-z)$. The null space of T is $\{(x, y, z): x+y-z=0, x-y+z=0, y-z=0\}$ which is the solution space of a homogeneous system of linear equations. Thus, $\operatorname{ker}(T)=\{(x, y, z): x=0, y=z, z \in \mathbb{R}\}=\{(0, t, t)$: $t \in \mathbb{R}\}=L(\{(0,1,1)\})$. Thus basis of $\operatorname{ker}(\mathrm{T})$ is $\{(0,1,1)\}$ (as non-zero singleton is independent) so that $\operatorname{Nullity}(T)=1 . \operatorname{Range}(T)=L\left(\left\{T\left(e_{1}\right), T\left(e_{2}\right), T\left(e_{3}\right)\right\}\right)=L(\{(1,1,0),(1,-1,1),(-1,1,-1)\})=$ $L(\{(1,1,0),(1,-1,1)\})=\{\alpha(1,1,0)+\beta(1,-1,1) \mid \alpha, \beta \in \mathbb{R}\}=\{(\alpha+\beta, \alpha-\beta, \beta) \mid \alpha, \beta \in \mathbb{R}\}$. Note that Range of T is linear span of $\{(1,1,0),(1,-1,1)\}$ which is linearly independent so that $\operatorname{Rank}(T)$ is 2 .

