- 1. Name of the Course: Linear Algebra
- 2. Course Code: LAL
- **3.** LTP structure of the Course: 3-1-0
- 4. Objective of the Course: Solving systems of linear equations, understanding vector spaces, linear transformations, eigenvalue, eigenvector, generalized notion of angle, distance, and length, diagonalization and orthogonalization.
- 5. Outcome of the Course: To able to solve systems of linear equations, work within vector spaces, to manipulate matrices and to do matrix algebra.
- 6. Prerequisite: None
- 7. Course Plan:

Component	Unit	Topics for Coverage
	Unit 1	System of linear equation, Gauss elimination method, Elementary matrices,
		Invertible matrices, Gauss-Jordon method for finding inverse of a matrix,
		Determinant, Cramer's rule, Vector spaces, Linearly independence and
Component 1		independence, Basis, Dimension.
	Unit 2	Linear transformation, Representation of linear maps by matrices, Rank-Nullity
		theorem, Rank of a matrix, Row and column spaces, Solution space of a system of
		homogeneous and non-homogeneous equations, Inner product space, Cauchy-
		Schwartz inequality, Orthogonal basis.
	Unit 3	Gram-Schmidt orthogonalization process, Orthogonal projection, Eigen value,
		eigenvector, Cayley-Hamilton theorem, Diagonalizability and minimal
Component 2		polynomial, Spectral theorem.
	Unit 4	Positive, negative and semi definite matrices. Decomposition of the matrix in
		terms of projections, Strategy for choosing the basis for the four fundamental
		subspaces, Least square solutions and fittings, Singular values, Primary
		decomposition theorem, Jordan canonical form.

8. Text Books/References:

- 1. Gilbert Strang, Introduction to Linear Algebra, 4th Edition, Cambridge Press (2009).
- 2. K. Hoffman and R. Kunze, Linear Algebra, 2nd Edition, Pearson (2015).
- 3. S. Kumaresan, Linear algebra A Geometric approach, Prentice Hall of India (2000).
- 4. S. Lang, Introduction to Linear Algebra, 2ndEdition, Springer (2012).