1. Name of the Course: Linear Algebra
2. Course Code: LAL
3. LTP structure of the Course: 3-1-0
4. Objective of the Course: Solving systems of linear equations, understanding vector spaces, linear transformations, eigenvalue, eigenvector, generalized notion of angle, distance, and length, diagonalization and orthogonalization.
5. Outcome of the Course: To able to solve systems of linear equations, work within vector spaces, to manipulate matrices and to do matrix algebra.
6. Prerequisite: None
7. Course Plan:

Component	Unit	Topics for Coverage
Component 1	Unit 1	System of linear equation, Gauss elimination method, Elementary matrices, Invertible matrices, Gauss-Jordon method for finding inverse of a matrix, Determinant, Cramer's rule, Vector spaces, Linearly independence and independence, Basis, Dimension.
	Unit 2	Linear transformation, Representation of linear maps by matrices, Rank-Nullity theorem, Rank of a matrix, Row and column spaces, Solution space of a system of homogeneous and non-homogeneous equations, Inner product space, Cauchy- Component 2

8. Text Books/References:

1. Gilbert Strang, Introduction to Linear Algebra, 4th Edition, Cambridge Press (2009).
2. K. Hoffman and R. Kunze, Linear Algebra,2nd Edition, Pearson (2015).
3. S. Kumaresan, Linear algebra - A Geometric approach, Prentice Hall of India (2000).
4. S. Lang, Introduction to Linear Algebra, 2ndEdition, Springer (2012).
