Mathematical Foundation for Data Science

Calculus: Infinite sequences and series, Limit, continuity and differentiability, Maxima/Minima of a function of one and several variable(s), Riemann Integration, Improper integral, Multilpe integrals, Chain rule, Gradient, Directional derivatives.

Linear Algebra: Vector spaces, Linearly independence and independence, Basis, Dimension., ,Linear transformation, Representation of linear maps by matrices, Inner product space, Eigenvalues and Eigenvectors, Diagonalization of matrices, Specrtal theorem, Singular value decomposition (SVD) numerical rank determination via SVD, solution of least squares problems, Moore- Penrose inverse, low rank approximations via SVD, , inverse power and Rayleigh quotient iterations, Schur's decomposition, unitary similarity transformation of Hermitian matrices to tridiagonal form, QR algorithm, implementation of explicit QR algorithm for Hermitian matrices.

Textbooks:

- L. N. Trefethen and David Bau, Numerical Linear Algebra, SIAM, Philadelphia, 1997.
- D. S. Watkins, Fundamentals of Matrix Computation, 2nd Edition, Wiley, 2002.
- L. Elden Matrix Methods in Data Mining and Pattern Recognition, SIAM, Philadelphia, 2007.
- D. Kincaid and W. Cheney, Numerical Mathematics and Computing, 7th Edn., Cengage, 2013.
- K. E. Atkinson, Introduction to Numerical Analysis, 2nd Edn., John Wiley, 1989.

