Function of Random Variables

Let (\mathcal{S}, Σ, P) be a probability space with a random variable $X: \mathcal{S} \longrightarrow \mathbb{R}$, and let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Consider the function $Z: \mathcal{S} \rightarrow \mathbb{R}$ defined by $Z(w)=h(X(w))$. It will be interesting to know when Z is an RV and what are the probabilistic properties of Z.

Remark 1. (1) Let X be a random variable and let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $h^{-1}(A) \in \mathbb{B}_{\mathbb{R}}$ for every $A \in \mathbb{B}_{\mathbb{R}}$. Then the function $Z: \mathcal{S} \rightarrow \mathbb{R}$ defined by $Z(w)=h(X(w))$ is a random variable. Prove! The function Z (written as $h \circ X$ or $h(X)$) is called a function of random variable X.
(2) If X is an $R V$, and $h: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, then $h \circ X$ is an $R V$. In particular, $X^{2},|X|, \max \{X, 0\}$ and $\sin X$ are random variables.
(3) If X is an $R V$ and h is strictly monotone then $h(X)$ is an $R V$.

The next two theorems deal with probability distribution of a function of random variables.

Theorem 2. Let X be an $R V$ of discrete type with support E_{X} and p.m.f. f_{X}. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $h^{-1}(A) \in \mathbb{B}_{\mathbb{R}}$ for every $A \in \mathbb{B}_{\mathbb{R}}$ and let $Z: \mathcal{S} \rightarrow \mathbb{R}$ be a function defined by $Z(w)=h(X(w))$. Then Z is an $R V$ of discrete type with support $E_{Z}=\left\{h(x): x \in E_{X}\right\}$ and p.m.f.

$$
\begin{aligned}
f_{Z}(z) & =\left\{\begin{array}{l}
\sum_{x \in A_{z}} f_{X}(x), \text { if } z \in E_{Z}, \\
0, \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{l}
P\left(\left\{X \in A_{z}\right\}\right), \text { if } z \in E_{Z}, \\
0, \text { otherwise, }
\end{array}\right.
\end{aligned}
$$

where $A_{z}=\left\{x \in E_{X}: h(x)=z\right\}$.
Problem 3. Let X be a random variable with p.m.f.

$$
f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{7}, \text { if } x \in\{-2,-1,0,1\}, \\
\frac{3}{14}, \text { if } x \in\{2,3\} \\
0, \text { otherwise }
\end{array}\right.
$$

Show that $Z=X^{2}$ is a random variable and find its p.m.f.

Solution. Clearly $E_{X}=\{-2,-1,0,1,2,3\}$ and $E_{Z}=\{0,1,4,9\}$. Also,

$$
\begin{aligned}
& P(\{Z=0\})=P\left(\left\{X^{2}=0\right\}\right)=P(\{X=0\})=\frac{1}{7}, \\
& P(\{Z=1\})=P\left(\left\{X^{2}=1\right\}\right)=P(\{X \in\{-1,1\}\})=\frac{1}{7}+\frac{1}{7}=\frac{2}{7}, \\
& P(\{Z=4\})=P\left(\left\{X^{2}=4\right\}\right)=P(\{X \in\{-2,2\}\})=\frac{1}{7}+\frac{3}{14}=\frac{5}{14}, \\
& P(\{Z=9\})=P\left(\left\{X^{2}=9\right\}\right)=P(\{X \in\{-3,3\}\})=0+\frac{3}{14}=\frac{3}{14} .
\end{aligned}
$$

Clearly Z is of discrete type.

The p.m.f. of Z is

$$
f_{Z}(z)=\left\{\begin{array}{l}
\frac{1}{7}, \text { if } z=0 \\
\frac{2}{7}, \text { if } z=1 \\
\frac{5}{14}, \text { if } z=4, \\
\frac{3}{14}, \text { if } z=9 \\
0, \text { otherwise }
\end{array}\right.
$$

Theorem 4. Let X be a random variable of continuous type with p.d.f. f_{X} and support E_{X} such that E_{X} is a finite union of disjoint open intervals in \mathbb{R}. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ function such that $h^{-1}(A) \in \mathbb{B}_{\mathbb{R}}$ for every $A \in \mathbb{B}_{\mathbb{R}}$, and h is differentiable and strictly monotone on E_{X}. Let $E_{T}=\left\{h(x): x \in E_{X}\right\}$. Then $T=h(X)$ is an $R V$ of continuous type with p.d.f.

$$
f_{T}(t)=\left\{\begin{array}{l}
f_{X}\left(h^{-1}(t)\right)\left|\frac{d}{d t} h^{-1}(t)\right|, \text { if } t \in E_{T} \\
0, \text { otherwise }
\end{array}\right.
$$

Problem 5. Let X be an RV with p.d.f.

$$
f_{X}(x)=\left\{\begin{array}{l}
e^{-x} \text { if } x>0 \\
0, \text { otherwise }
\end{array}\right.
$$

and let $T=X^{2}$. Show that T is an $R V$ of continuous type and find its p.d.f. Also, find the p.d.f. of T by computing its c.d.f.

Solution. Clearly T is an RV and $E_{X}=E_{T}=(0, \infty)$. Also, $h(x)=x^{2}, x \in E_{X}$ is strictly increasing on E_{X} with inverse $h^{-1}(x)=\sqrt{x}, x \in E_{T}$. From the above theorem, T is a continuous type RV with p.d.f.

$$
\begin{aligned}
f_{T}(t) & =\left\{\begin{array}{l}
f_{X}(\sqrt{t})\left|\frac{d}{d t}(\sqrt{t})\right|, \text { if } t>0, \\
0, \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{l}
\frac{e^{-\sqrt{t}}}{2 \sqrt{t}}, \text { if } t>0 \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Now, let us find the c.d.f. of T.

$$
\begin{aligned}
F_{T}(t) & =P(T \leq t) \\
& =P\left(X^{2} \leq t\right) \\
& =\left\{\begin{array}{l}
0, \text { if } t \leq 0, \\
P(-\sqrt{t} \leq X \leq \sqrt{t}), \text { if } t>0
\end{array}\right. \\
& =\left\{\begin{array}{l}
0, \text { if } t \leq 0, \\
\int_{0}^{\sqrt{t}} f_{X}(x) d x, \text { if } t>0
\end{array}\right. \\
& =\left\{\begin{array}{l}
0, \text { if } t \leq 0, \\
-e^{-\sqrt{t}}, \text { if } t>0 .
\end{array}\right.
\end{aligned}
$$

We see that F_{T} is differentiable everywhere except $t=0$. Therefore, the p.d.f. of T is given by

$$
\begin{aligned}
f_{T}(t) & =\left\{\begin{array}{l}
\left(-e^{-\sqrt{t}}\right)^{\prime}, \text { if } t>0, \\
0, \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{l}
\frac{e^{-\sqrt{t}}}{2 \sqrt{t}}, \text { if } t>0, \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

