
Interval Estimation

In the theory of point estimation, we are interested in estimating the value of parametric function
g(θ) by a single value t based on the observations x1, . . . , xn when the samples are drawn from a
density f(x, θ), θ ∈ Theta. In practice, one is not generally interested in finding a point estimate
of g(θ), but a set of values, say, H(θ), such that H(θ) contains the true value of the parameter
g(θ) with high probability. This type of problems are called problems of confidence interval (set)
estimation. When H(θ) is an interval, it is called confidence interval.

Definition 1. Confidence Interval: Let X = (X1, . . . , Xn) be a random sample from a population
with density function f(x, θ), θ ∈ Θ. Let T1 = t1(X1, . . . , Xn), T2 = t2(X1, . . . , Xn) be two statistics
satisfying T1 ≤ T2 such that

Pθ[T1 ≤ g(θ) ≤ T2] = 1− α ∀θ ∈ Θ (1)

where (1−α) does not depend upon θ. Then the random interval (T1, T2) is called the 100(1−α)%
confidence interval for g(θ). The quantity (1−α) is called the confidence coefficient of this interval.
The statistics T1, T2 are respectively called lower and upper confidence limits for g(θ). For a given
sample observation x = (x1, . . . , xn), the values of the statistic T1(x), T2(x) are the confidence
limits for g(θ).

Usually α is taken to be very small quantity, 0.05, 0.01(say) so that 1−α is 0.95, 0.99. In some
cases, any of the two statistics T1, T2 may be a constant; however T1, T2 can not both be constants.

Definition 2. One-sided confidence interval: Let X be a random sample from a population with
pdf f(x, θ), θ ∈ Θ. Let T1 = t1(X) be a statistic such that

Pθ[T1 ≤ g(θ)] = 1− α θ ∈ Θ (2)

where α does not depend upon θ. Then T1 is called the on-sided lower confidence limit for g(θ).
Thus, the interval (T1,∞) covers g(θ) with probability 1−α. Similarly, let T2 = t2(X) be a statistic
such that

Pθ[T2 ≥ g(θ)] = 1− α θ ∈ Θ (3)

where α does not depend on θ. Then T2 is called the one-sided upper confidence limit for g(θ).
Here, the interval (−∞, T2) covers g(θ) with probability (1 − α). Note that θ may be a vector of
parameters. In making probability statements like (1), (2) and (3), we do not mean that g(θ) is a
random variable. (1) means that the probability is (1 − α) that the random interval (T1, T2) will
cover g(θ), where the true value of the parameter θ may be.

Example 3. Let X1, . . . , Xn be a random sample from N(µ, σ2) population when σ2 is known.
Find a 100(1− α)% confidence interval for µ.

Solution: It is known that
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where, τα/2 is the upper 100(α/2)% probability point on a standard normal distribution.

Hence the interval
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is 100(1− α%) confidence interval for µ.

Clearly any random interval
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where α = α1 + α2 is 100(1 − α%)

confidence interval for µ. Again
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Also
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)
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Therefore T1 = X̄ − τα σ√
n

, T2 = X̄ + τα
σ√
n

, are respectively the lower and upper confidence limits

for µ.
In case of discrete random variables, it is evident that it is not possible to construct confidence
intervals of exact confidence coefficient (1− α) for each 0 < α < 1. In this case, we may construct
confidence intervals of confidence coefficient measuring at least (1−α). The statistics (T1, T2) will,
therefore, provide confidence limits to a parameter g(θ) if

Pθ(T1 ≤ g(θ)) ≤ T2) ≥ 1− α θ ∈ Θ. (7)

Similarly, T1(T2) will be lower(upper) confidence limit with confidence coefficient (1−α) if Pθ(T1 ≤
g(θ)) ≥ 1− α (Pθ(T2 ≥ g(θ)) ≥ 1− α) ∀ θ ∈ Θ.
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