Interval Estimation

In the theory of point estimation, we are interested in estimating the value of parametric function $g(\theta)$ by a single value t based on the observations x_1, \ldots, x_n when the samples are drawn from a density $f(x,\theta), \theta \in Theta$. In practice, one is not generally interested in finding a point estimate of $g(\theta)$, but a set of values, say, $H(\theta)$, such that $H(\theta)$ contains the true value of the parameter $g(\theta)$ with high probability. This type of problems are called problems of confidence interval (set) estimation. When $H(\theta)$ is an interval, it is called confidence interval.

Definition 1. Confidence Interval: Let $\underline{X} = (X_1, \ldots, X_n)$ be a random sample from a population with density function $f(x, \theta), \theta \in \Theta$. Let $T_1 = t_1(X_1, \ldots, X_n), T_2 = t_2(X_1, \ldots, X_n)$ be two statistics satisfying $T_1 \leq T_2$ such that

$$P_{\theta}[T_1 \le g(\theta) \le T_2] = 1 - \alpha \quad \forall \theta \in \Theta \tag{1}$$

where $(1 - \alpha)$ does not depend upon θ . Then the random interval (T_1, T_2) is called the $100(1 - \alpha)\%$ confidence interval for $g(\theta)$. The quantity $(1 - \alpha)$ is called the confidence coefficient of this interval. The statistics T_1, T_2 are respectively called lower and upper confidence limits for $g(\theta)$. For a given sample observation $\underline{x} = (x_1, \ldots, x_n)$, the values of the statistic $T_1(\underline{x}), T_2(\underline{x})$ are the confidence limits for $g(\theta)$.

Usually α is taken to be very small quantity, 0.05, 0.01(say) so that $1 - \alpha$ is 0.95, 0.99. In some cases, any of the two statistics T_1 , T_2 may be a constant; however T_1 , T_2 can not both be constants.

Definition 2. One-sided confidence interval: Let X be a random sample from a population with $pdf f(x, \theta), \theta \in \Theta$. Let $T_1 = t_1(\underline{X})$ be a statistic such that

$$P_{\theta}[T_1 \le g(\theta)] = 1 - \alpha \quad \theta \in \Theta \tag{2}$$

where α does not depend upon θ . Then T_1 is called the on-sided lower confidence limit for $g(\theta)$. Thus, the interval (T_1, ∞) covers $g(\theta)$ with probability $1 - \alpha$. Similarly, let $T_2 = t_2(\underline{X})$ be a statistic such that

$$P_{\theta}[T_2 \ge g(\theta)] = 1 - \alpha \quad \theta \in \Theta \tag{3}$$

where α does not depend on θ . Then T_2 is called the one-sided upper confidence limit for $g(\theta)$. Here, the interval $(-\infty, T_2)$ covers $g(\theta)$ with probability $(1 - \alpha)$. Note that θ may be a vector of parameters. In making probability statements like (1), (2) and (3), we do not mean that $g(\theta)$ is a random variable. (1) means that the probability is $(1 - \alpha)$ that the random interval (T_1, T_2) will cover $g(\theta)$, where the true value of the parameter θ may be.

Example 3. Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$ population when σ^2 is known. Find a $100(1-\alpha)\%$ confidence interval for μ .

Solution: It is known that

$$P_{\mu}\left(\bar{X} - \tau_{\alpha/2}\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + \tau_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha \quad \forall \mu,$$
(4)

where, $\tau_{\alpha/2}$ is the upper 100($\alpha/2$)% probability point on a standard normal distribution. Hence the interval $\left(\bar{X} - \tau_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + \tau_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$ is 100(1 – α %) confidence interval for μ .

Clearly any random interval $\left(\bar{X} - \tau_{\alpha_1} \frac{\sigma}{\sqrt{n}}, \bar{X} + \tau_{\alpha_2} \frac{\sigma}{\sqrt{n}}\right)$ where $\alpha = \alpha_1 + \alpha_2$ is $100(1 - \alpha\%)$ confidence interval for μ . Again

$$P_{\mu}\left(\bar{X} - \tau_{\alpha}\frac{\sigma}{\sqrt{n}} \le \mu\right) = 1 - \alpha \quad \forall \mu.$$
(5)

Also

$$P_{\mu}\left(\bar{X} + \tau_{\alpha}\frac{\sigma}{\sqrt{n}} \ge \mu\right) = 1 - \alpha \quad \forall \mu.$$
(6)

Therefore $T_1 = \bar{X} - \tau_{\alpha} \frac{\sigma}{\sqrt{n}}$, $T_2 = \bar{X} + \tau_{\alpha} \frac{\sigma}{\sqrt{n}}$, are respectively the lower and upper confidence limits for μ .

In case of discrete random variables, it is evident that it is not possible to construct confidence intervals of exact confidence coefficient $(1 - \alpha)$ for each $0 < \alpha < 1$. In this case, we may construct confidence intervals of confidence coefficient measuring at least $(1 - \alpha)$. The statistics (T_1, T_2) will, therefore, provide confidence limits to a parameter $g(\theta)$ if

$$P_{\theta}(T_1 \le g(\theta)) \le T_2) \ge 1 - \alpha \quad \theta \in \Theta.$$
(7)

Similarly, $T_1(T_2)$ will be lower(upper) confidence limit with confidence coefficient $(1 - \alpha)$ if $P_{\theta}(T_1 \le g(\theta)) \ge 1 - \alpha$ $(P_{\theta}(T_2 \ge g(\theta)) \ge 1 - \alpha) \forall \theta \in \Theta$.