
Testing of Hypotheses

Let X1, . . . , Xn be a random sample from a population distribution Fθ, θ ∈ Θ, where the functional
form of Fθ is known, except, for the parameter θ. For example, we may have a random sample
from N(µ, 1) population where the value µ is unknown. One may be interested in examining the
validity of assertion that the value of µ lies in a certain known range, say (µ1, µ2) on the basis of
the sample drawn from the population. A problem of this type is usually referred to as a problem
of testing of hypotheses.

Definition 1. A parametric hypothesis is a statement about the unknown parameter θ. It is usually
referred to as the null hypothesis H0 : θ ∈ Θ0 where Θ0 ⊂ Θ. The statement H1 : θ ∈ Θ1 is usually
referred to as the alternative hypothesis.

Our task is to test H0 against H1. Here θ can be vector valued also.

Definition 2. If Θ0 contains only one point, say θ0, the hypothesis H0 is said to be a simple
hypothesis. Otherwise, i.e., if Θ0 contains more than one point, the hypothesis H0 is said to be
composite hypothesis. Similar definition hold for alternative hypothesis.

Under simple hypothesis the probability density function(pdf) or probability mass function(pmf)
of a random variable X is completely specified.

Example 3. Suppose X follows N(µ, σ2), where σ2 is known. The hypothesis H0 : µ = µ0 is a
simple hypothesis. The hypotheses H : µ > µ0, H : µ ≤ µ0 are composite hypothesis. If σ2 is also
unknown, H0 : µ = µ0 is composite hypothesis, because, here, Θ = {(µ, σ2),−∞ < µ <∞, σ2 > 0}
and Θ0 = {µ = µ0, σ

2 > 0} contains infinitely many points.

Often we are interested in testing a simple hypothesis H0(θ = θ0) against alternative composite
hypothesis H1(θ 6= θ0) called two/both sided alternative or one sided composite alternatives H1(θ <
θ0), H2(θ > θ0).
The problem of testing of hypothesis H0 against H1 may be described as follows. Given the sample
observations, x = (x1, . . . , xn)′, we make a decision which will either lead to either acceptance or
rejection of H0. The sample space χn of the random vector X = (X1, . . . , Xn)′, is divided into two
disjoint subsets w and wc = χn − w such that H0 is rejected if x ∈ w and is accepted if x ∈ wc.
The region w is called the critical region and wc the region of acceptance. Such a test is called a
non-randomized test of H0 against H1.
Let δ(x) is be a function denoting the probability of rejecting the null hypothesis H0 when x is the
sample observation. Then, for a non-randomized test

δ(x) =

{
1, ifx ∈ w
0, ifx ∈ wc.

Definition 4. Every Borel-measurable mapping φ : Rn → [0, 1] is called a test function.

Definition 5. A non-randomized test for testing H0 against H1 is a test function δ(x) defined for
all x ∈ χn such that

δ(x) =

{
1, ifx ∈ w
0, ifx ∈ wc.

Here, the critical region w depends on the test function δ. If δ changes, w(δ) will be different. In
a non-randomized test if x is observed we either accept H0 or reject it with probability 1.

Definition 6. A randomised test for testing H0 against H1 is a test function δ(x) defined for all
x ∈ χn such that 0 ≤ δ(x) ≤ 1 ∀x. If we observe x we make a Bernoulli experiment with probability
of success δ(x). If a success occurs we reject H0, otherwise we accept it.
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Randomised test will be needed in general only if X is discrete random variable. But we shall only
consider non-randomised tests.

In the problem of testing of hypotheses, the true value of θ remains unknown. We are only
aiming at testing whether the observation x supports our assertion θ ∈ Θ0 i.e. x is a random
sample from the pdf fθ(x), θ ∈ Θ0. Hence, the acceptance (rejection) of H0 on the basis of x does
not necessarily imply that H0 is true (false). Therefore, we may reject H0 when it is, in fact, true;
or we may accept it H0 when it is false. In both the cases we commit some error.

Definition 7. Type I Error: Rejecting H0, when it is true is known as type I error.

Definition 8. Type II Error: Accepting H0, when it is false is known as type II error.

Let H0 : θ = θ0 so that Θ0 = {θ0}. In this case probability of type I error is given by

Pθ0(w) = P{x ∈ w|H0} =

∫
w
fθ0(x)dx =

∫
δ(x)fθ0(x)dx = Eθ0(δ(x)) (1)

and probability of type II error is given by

Pθ(w
c) = P{x ∈ wc|H1} =

∫ c

w
fθ(x)dx, θ ∈ Θ1. (2)

The probability of rejecting a true H0 depends on the test function δ and the value θ0 and is called
the level of significance of test or the size of the critical region w.

The probability of rejecting H0 when it is false i.e. when θ ∈ Θ̄0 = Θ− {θ0}, is

Pθ(x ∈ w) = 1− Pθ(x ∈ wc) = 1− Pθ(wc), θ ∈ Θ̄0 = γθ(w), θ ∈ Θ̄0. (3)

γθ(w) is called the power of the test w. It depends on the test function δ and the value of the
parameter θ ∈ Θ̄0. Note that γθ(w) = Eθ(δ(x)) where θ ∈ Θ̄0.

For θ ∈ Θ1(⊆ (Θ̄0),

γθ(w) = 1− Pθ(wc) = 1− Probability of type II error. (4)

In an ideal test procedure both types of errors should be minimum. However, simultaneous mini-
mization of both both the errors is not possible. Therefore, we try to fix an upper bound on one
error and then find a test procedure for which the second probability is minimum. In practice, we
pre-assign a small value α (usually 0.05 or 0.01) to probability of type I error and minimize the
probability of type II error (βθ)subject to this constraint.

Example 9. Let X1, · · · , Xn be a random sample from N(µ, 1). We want to test H0 : µ = −1/2
against H1 : µ = 1/2.
Here, the acceptance region is wc = (−∞, 0], i.e., accept H0 if X̄ ≤ 0. The rejection region is
w = (0,∞), i.e., reject H0 if X̄ > 0. Now, we calculate both the errors.

α = Prob(Type I error)= Prob(Rejecting H0, when it is true)

= Pµ=−1
2

(X̄ > 0) = Pµ=−1
2

(
√
n(X̄ + 1

2) >
√
n
2 ) = P (Z >

√
n
2 )

= P (Z > 2) = 0.0228, for n = 16.

β=Prob(Type II error)= Prob(Accepting H0, when it is false) ⇒

β = Pµ= 1
2
(X̄ ≤ 0) = Pµ=−1

2
(
√
n(X̄ − 1

2
) ≤ −

√
n

2
) = P (Z ≤

√
n

2
) = P (Z ≤ 2) = 0.0228
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, for n = 16.
Here, α and β are same.

Now let us modify the test procedure. Let the acceptance and rejection region be wc1 = {X̄ < −1
4 }

and w1 = {X̄ ≥ −14 }, respectively. Therefore, the probability of type I and type II errors are

α∗ = Pµ=−1
2

(X̄ ≥ −1

4
) = Pµ=−1

2
(
√
n(X̄ +

1

2
) >

√
n

4
) = P (Z ≥

√
n

4
) = 0.1587,

for n = 16.

β∗ = Pµ= 1
2
(X̄ <

−1

4
) = P (Z < −3) = 0.0013,

for n = 16.
Here, we observe that β∗ < β but α∗ > α. Hence, it is clear that the simultaneous minimization of
both the errors α and β is not possible.

Exercise 10. Let X1, . . . , X20 be a random sample from the exponential distribution with pdf
f(x; θ) = θe−θx, 0 < x <∞, θ > 0. Calculate type I error and type II error for testing H0 : θ = 1
against H1 : θ = 2.
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