Methods of Finding Estimators

There are various methods of finding estimators for the parameters, some of which are listed below.

- Method of Maximum Likelihood
- Method of Moments
- Method of Least Squares
- Method of Minimum Chi square Estimation

We will discuss the method of moments and method of maximum likelihood estimation in detail.

Method of Maximum Likelihood Estimation: Let X_1, \dots, X_n be a random sample having joint probability density function $f_{\theta}(x_1, \dots, x_n)$, $\theta \in \Theta$. The function $f_{\theta}(x_1, \dots, x_n)$ may be regarded as a function of θ for given values (x_1, \dots, x_n) . When regarded as a function of θ , the expression $f_{\theta}(x_1, \dots, x_n)$ is referred to as the likelihood function of θ , $L(\theta|x_1, \dots, x_n)$ and expresses the probability that the value of the random variable θ is θ for given values of observations x_1, \dots, x_n . The maximum likelihood estimate (MLE) of θ is that value of θ , within the admissible range of values of θ , which makes the likelihood function a maximum, i.e. the MLE of θ is the number $\hat{\theta}$, if it exists, such that $L(\hat{\theta}|x_1, \dots, x_n) > L(\theta'|x_1, \dots, x_n)$ whatever be θ' , any other value in Θ .

Ordinarily the parameter θ may be regarded as continuous and in this case the determination of MLE becomes simple. Assuming

- 1. the likelihood is a positive differentiable function of θ .
- 2. the maximum of the likelihood does not occur on the boundary of the interval in \mathbb{R} of all admissible values of θ .

The stationary values of the likelihood function within the interval are given by the roots of the equation

$$\frac{\partial L(\theta | x_1, \dots, x_n)}{\partial \theta} = 0.$$

A sufficient condition that any of these values, say, $\hat{\theta}$ be a real maximum is

$$\frac{\partial^2 L(\theta|x_1,\ldots,x_n)}{\partial \theta^2}\Big|_{\theta=\hat{\theta}} < 0.$$

Since $\log L$ attains its maximum value for the same value of θ as L it is usual to maximize $\log L$ in lieu of L. Therefore, we shall seek solution of

$$\frac{\partial \log L(\theta | x_1, \dots, x_n)}{\partial \theta} = 0.$$
(1)

subject to the condition

$$\frac{\partial^2 \log L(\theta | x_1, \dots, x_n)}{\partial \theta^2} < 0.$$
⁽²⁾

(2) is generally referred to as likelihood equation. If the observations are iid

$$f_{\theta}(x_1, \dots, x_n) = \prod_{i=1}^n f_{\theta}(x_i)$$
(3)

where $f_{\theta}(x)$ is the common pdf and here $\log L(\theta) = \sum_{i=1}^{n} \log f_{\theta}(x)$.

- **Remark 1.** 1. If there are more than one solution satisfying (1) and (2), the maximum of these solutions is to be taken.
 - 2. We shall ignore any solution which is independent of the observations, i.e., any constant solution.
 - 3. The method holds even if all the variables X_1, \ldots, X_n are discrete and in this case the density function is to be replaced by probability mass function (pmf).
 - 4. If assumptions 1 and 2 do not hold, the MLE cannot be obtained by solving the likelihood equation.

If more than one parameters are involved, i.e., a sample has the pdf $f_{\theta}(x_1, \ldots, x_n)$ where $\underline{\theta} = (\theta_1, \ldots, \theta_n) \in \Theta \subset \mathbb{R}^k$. In this case, the MLEs are the numbers $\hat{\theta}_1, \ldots, \hat{\theta}_k$, if such a set exists, which maximises f as a function of $\underline{\theta}$. If the likelihood function does not have a maxima on the boundary of set Θ , the maximum of the likelihood function is obtained by the solution of

$$\frac{\partial L(\theta|x_1,\dots,x_n)}{\partial \theta_i} = 0, \quad i = 1,\dots,k$$

subject to the condition that the matrix

$$\left(\frac{\partial^2 \log L(\theta|x_1, \dots, x_n)}{\partial \theta_i \theta_j}\right)_{i,j=1,\dots,r} \middle|_{\underline{\theta}=\underline{\hat{\theta}}}$$
(4)

is negative definite.

Example 2. Let X_1, \dots, X_n follow Poisson distribution with parameter λ ; $\lambda > 0$. Find the MLE for λ .

Solution: Let $\underline{x} = (x_1, \dots, x_n)$ be a realization of a random sample. Then the likelihood function is given by

$$L_{\lambda}(\underline{x}) = \prod_{i=1}^{n} f(x_i, \lambda) = \prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{x_i}}{x_i!} = \frac{e^{-n\lambda} \lambda^{\sum_{i=1}^{n} x_i}}{\prod_{i=1}^{n} x_i!}$$

Therefore, the log likelihood function is given by

$$\log L_{\lambda}(\underline{x}) = l(\lambda) = -n\lambda + \sum_{i=1}^{n} x_i \log \lambda - \log \left(\prod_{i=1}^{n} x_i!\right)$$

The likelihood equation is

$$\frac{\partial l}{\partial \lambda} = -n + \frac{1}{\lambda} \sum_{i=1}^{n} x_i = 0.$$

Now, $\frac{\sum_{i=1}^{n} x_i - n\lambda}{\lambda} > 0$ if $\lambda < \bar{x}$ and $\frac{\sum_{i=1}^{n} x_i - n\lambda}{\lambda} < 0$ if $\lambda > \bar{x}$ Hence, the MLE for λ is $\hat{\lambda} = \bar{x}$.

Example 3. Let X_1, X_2 be a random sample from a population

$$f_{\theta}(x) = \frac{2}{\theta^2}, \quad 0 < x < \theta.$$

Find the MLE of θ .

Solution: The likelihood function is given by

$$L_{\theta}(\underline{x}) = \frac{4}{\theta^4} (\theta - x_1)(\theta - x^2)$$

The likelihood equation is

$$\frac{\partial \log L}{\partial \theta} = -\frac{4}{\theta} + \frac{1}{\theta - x_1} + \frac{1}{\theta - x_2} = 0$$

 \Rightarrow

$$\hat{\theta} = \frac{3(x_1 + x_2) + \sqrt{9(x_1 - x_2)^2 + 4x_1x_2}}{4}.$$

Remark 4. 1. The MLE is unique. (Prove yourself).

2. Invariance Property: If $\hat{\theta}$ is the MLE of θ , then $g(\hat{\theta})$ is the MLE of $g(\theta)$ provided $g(\theta)$ is some single valued function of θ .

Exercise 5. Let X_1, \ldots, X_n be random sample with following pdf/pmf. Find the MLE(s) of the parameter(s).

- 1. $N(\theta, \theta^2), \ \theta \in (0, \infty).$
- 2. $f_{\alpha,\beta}(x) = \frac{\alpha\beta^{\alpha}}{x^{\alpha+1}}, \ \alpha > 0, \ x \ge \beta > 0.$
- 3. $P(X_i = 0) = 1 p, P(X_i = 1) = p \text{ where } p \in \left[\frac{1}{4}, \frac{3}{4}\right].$

Method of Moments: Let X_1, \dots, X_n be a random sample from a population with probability distribution $P_{\underline{\theta}}; \theta \in \Theta; \underline{\theta} = (\theta_1, \dots, \theta_k)$.

Consider first k non central moments,

$$\mu_1' = E(X_1) = g_1(\underline{\theta})$$
$$\mu_2' = E(X_1^2) = g_2(\underline{\theta})$$
$$\vdots$$
$$\mu_k' = E(X_1^k) = g_k(\underline{\theta}).$$

Assume that the above system of equations have solution as

$$\theta_{1} = h_{1}(\mu'_{1}, \cdots, \mu'_{k})$$
$$\theta_{2} = h_{2}(\mu'_{1}, \cdots, \mu'_{k})$$
$$\vdots$$
$$\theta_{k} = h_{k}(\mu'_{1}, \cdots, \mu'_{k}).$$

Now, define the first k non central sample moments as

$$\alpha_1 = \frac{1}{n} \sum_{i=1}^n X_i$$
$$\alpha_2 = \frac{1}{n} \sum_{i=1}^n X_i^2.$$

$$\vdots$$
$$\alpha_k = \frac{1}{n} \sum_{i=1}^n X_i^k.$$

In the method of moments, we estimate k^{th} population moment by k^{th} sample moment, i.e.,

$$\hat{\mu}_{j'} = \alpha_j \; ; \; j = 1, \cdots, k.$$

Thus, the method of moments estimators of $\theta_1, \dots, \theta_k$ are defined as

$$\hat{\theta}_1 = h_1(\alpha_1, \cdots, \alpha_k)$$
$$\hat{\theta}_2 = h_2(\alpha_1, \cdots, \alpha_k)$$
$$\vdots$$
$$\hat{\theta}_k = h_k(\alpha_1, \cdots, \alpha_k).$$

Example 6. Let X_1, \dots, X_n follow $N(\mu, \sigma^2)$; μ and σ^2 are unknown. Find the method of moments estimators μ and σ^2 .

Solution: We know, for normal distribution, $\mu'_1 = \mu$ and $\mu_2' = \mu^2 + \sigma^2$. Therefore, we have

$$\mu = \mu_1'$$

and

$$\sigma^2 = \mu_2' - {\mu_1'}^2.$$

Now, equating the population moments to sample moments, we get

$$\hat{\mu}_{MME} = \bar{X}$$

and

$$\hat{\sigma}_{MME}^2 = \alpha_2 - \alpha_1^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \bar{X} \right)^2.$$

- **Exercise 7.** 1. Let X_1, \dots, X_k follow binomial distribution with parameters n and p. Find the moment estimators of p, when n in known.
 - 2. Let X_1, \dots, X_n be a random sample from Poisson distribution with parameter λ , find the moment estimator of λ .

Remark 8. 1. The method moment estimators need not be unbiased always.

2. If the functions g'_i s are continuous and one-one then the functions h'_i s are also continuous and then the method of moment estimators will be consistent.