
Conditional Expectation and Variance

Definition 1. Let (X, Y ) be a random vector and h : R −→ R be a function such that
h−1(A) ∈ BR, for all A ∈ BR. Then

(1) the conditional expectation of h(X), given Y , written as E[h(X)|Y ], is an random
variable that takes the value E[h(X)|Y = y], defined by

E[h(X)|Y = y] =


∑

x∈EX|Y =y

h(x)P (X = x|Y = y), if (X, Y ) is of discrete type and P (Y = y) > 0

∞∫
−∞

h(x)fX|Y (x|y) dx, if (X, Y ) is of continuous type and fY (y) > 0

(2) the conditional variance of h(X), given Y , written as V ar[h(X)|Y ], is an random
variable that takes the value V ar[h(X)|Y = y], defined by

V ar[h(X)|Y = y] = E[
(
h(X)− E[h(X)|Y = y]

)2|Y = y]

= E[
(
h(X)

)2|Y = y]− (E[h(X)|Y = y])2

Remark 2. (1) For any constant c, E[c|Y ] = c.
(2) Let hi : R −→ R be a function such that h−1i (A) ∈ BR, for all A ∈ BR, for i = 1, 2.

Then

E[a1h1(X) + a2h2(X)|Y ] = a1E[h1(X)|Y ] + a2E[h2(X)|Y ],

for any constants a1, a2.
(3) If X and Y are independent, then

E[h(X)|Y ] = E(h(X)) and V ar[h(X)|Y ] = V ar(h(X)).

(4) If P (X ≥ 0) = 1, then E[X|Y ] ≥ 0.
(5) If P (X1 ≥ X2) = 1, then E[X1|Y ] ≥ E[X1|Y ].

Theorem 3. (1) Let E(h(X)) exist. Then

E(h(X)) = E(E[h(X)|Y ]).

(2) The conditional Variance Formula:

V ar(h(X)) = V ar(E[h(X)|Y ]) + E(V ar[h(X)|Y ]).

Proof. Let (X, Y ) be of the discrete type. Then

E(E[h(X)|Y ]) =
∑
y

E[h(X)|Y = y]P (Y = y)

=
∑
y

[∑
x

h(x)P (X = x|Y = y)

]
P (Y = y)

=
∑
y

[∑
x

h(x)P (X = x, Y = y)

]
=
∑
x

[∑
y

h(x)P (X = x, Y = y)

]
=
∑
x

h(x)P (X = x)

= E(h(X)).
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(1)(2)

E(V ar[h(X)|Y ]) = E(E[
(
h(X)

)2|Y ]− (E[h(X)|Y ])2)

= E(E[
(
h(X)

)2|Y ])− E((E[h(X)|Y ])2))

= E(
(
h(X)

)2
)− E((E[h(X)|Y ])2))

and

V ar(E[h(X)|Y ]) = E((E[h(X)|Y ])2))− (E(E[h(X)|Y ]))2)

= E((E[h(X)|Y ])2))− (E(h(X)))2

Thus V ar(E[h(X)|Y ])+E(V ar[h(X)|Y ]) = E(
(
h(X)

)2
)−(E(h(X)))2 = V ar(h(X)).

�

Example 4. Let Z = (X, Y, Z) be a random vector with joint p.m.f.

f(x, y, z) =

{
xyz
72
, if (x, y, z) ∈ {1, 2} × {1, 2, 3} × {1, 3}

0, otherwise

(1) Let Y1 = 2X − Y + 3Z and Y2 = X − 2Y + Z. Find the correlation coefficient
between Y1 and Y2.

(2) For a fixed y ∈ {1, 2, 3}, find E[Y3|Y = y] and V ar[Y3|Y = y], where Y3 = XZ.

Solution:

(1) By Example 10 of Lecture 16, we know that the marginal p.m.f. of X, Y and Z
are

fX(x) =

{
x
3
, if x ∈ {1, 2}

0, otherwise

fY (y) =

{
y
6
, if y ∈ {1, 2, 3}

0, otherwise

and

fZ(z) =

{
z
4
, if y ∈ {1, 3}

0, otherwise

respectively. AlsoX, Y , Z are independent. Therefore, Cov(X, Y ) = Cov(X,Z) =
Cov(Y, Z) = 0. Hence,

Cov(Y1, Y2) = 2V ar(X) + 2V ar(Y ) + 3V ar(Z);

V ar(Y1) = 4V ar(X) + V ar(Y ) + 9V ar(Z);

and

V ar(Y2) = V ar(X) + 4V ar(Y ) + V ar(Z).

By a simple calculation, we have

E(X) =
5

3
, E(Y ) =

7

3
and E(Z) =

5

2
;

E(X2) = 3, E(Y 2) = 6 and E(Z2) = 7;

V ar(X) =
2

9
, V ar(Y ) =

5

9
and V ar(Z) =

3

4
2



Therefore,

Cov(Y1, Y2) =
137

36
, V ar(Y1) =

295

36
and V ar(Y2) =

115

36
.

Thus,

ρ(Y1, Y2) =
Cov(Y1, Y2)√
V ar(Y1)V ar(Y2)

=
137√

295
√
115

.

(2) As we know that X, Y , Z are independent, it follows that (X,Z) and Y are
independent. Thus, Y3 = XZ and Y are independent. Therefore, E[Y3|Y = y] =
E(Y3) = E(X)E(Z) = 25

6
and

V ar[Y3|Y = y] = V ar(Y3)

= V ar(E[XZ|Z]) + E(V ar[XZ|Z])
= V ar(ZE[X|Z]) + E(Z2V ar[X|Z])
= V ar(ZE(X)) + E(Z2V ar(X))

= V ar(
5

3
Z) + E(

2

9
Z2)

=
25

9
V ar(Z) +

2

9
E(Z2)

=
131

36
.

Example 5. Let Z = (X, Y ) be a random vector with joint p.d.f.

f(x, y) =

{
2, if 0 < x < y < 1

0, otherwise

For a fixed 0 < x < 1, find E[Y |X = x] and V ar[Y |X = x], and for a fixed 0 < y < 1,
find E[X|Y = y] and V ar[X|Y = y].

Solution: The marginal p.d.f. of X and Y are

fX(x) =

∞∫
−∞

f(x, y) dy =

1∫
x

2 dy =

{
2(1− x), if 0 < x < 1

0, otherwise

and

fY (y) =

∞∫
−∞

f(x, y) dx =

y∫
0

2 dx =

{
2y, if 0 < y < 1

0, otherwise

respectively. Hence, the conditional p.d.f. of Y , given X = x and the conditional p.d.f.
of X, given Y = y are

fY |X(y|x) =
f(x, y)

fX(x)
=

{
1

1−x , if x < y < 1

0, otherwise

and

fX|Y (x|y) =
f(x, y)

fY (y)
=

{
1
y
, if 0 < x < y

0, otherwise

Thus,

E[Y |X = x] =

∞∫
−∞

yfY |X(y|x) dy =

1∫
x

y

1− x
dy =

1 + x

2
;
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E[Y 2|X = x] =

∞∫
−∞

y2fY |X(y|x) dy =

1∫
x

y2

1− x
dy =

1 + x+ x2

3
;

E[X|Y = y] =

∞∫
−∞

xfX|Y (x|y) dx =

y∫
0

x

y
dy =

y

2
;

E[X2|Y = y] =

∞∫
−∞

x2fX|Y (x|y) dx =

y∫
0

x2

y
dy =

y2

3
.

Hence,

V ar[Y |X = x] = E[Y 2|X = x]−(E[Y |X = x])2 =
1 + x+ x2

3
−1 + 2x+ x2

4
=
x2 − 2x+ 1

12
;

and

V ar[X|Y = y] = E[X2|Y = y]− (E[X|Y = y])2 =
y2

3
− y2

4
=
y2

12
.

Example 6. Suppose that the expected number of accidents per week at an industrial
plant is four. Suppose also that the numbers of workers injured in each accident are
independent random variables with a common mean of 2. Assume also that the number
of workers injured in each accident is independent of the number of accidents that occur.
What is the expected number of injuries during a week?

Solution: Let N denote the number of accidents and Xi the number of workers injured
in the i−th accident, i = 1, 2, . . ., then the total number of injuries can be expressed as
N∑
i=1

Xi. Now, E(
N∑
i=1

Xi) = E(E[
N∑
i=1

Xi|N ]).

But E[
N∑
i=1

Xi|N = n] = E[
n∑

i=1

Xi|N = n] = E(
n∑

i=1

Xi) = nE(Xi) (since Xi and N

are independent, and Xi has common mean). Thus, E[
N∑
i=1

Xi|N ] = NE(Xi). Therefore,

E(
N∑
i=1

Xi) = E(NE(Xi)) = E(N)E(Xi) = 8.
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