## Conditional Distributions and Independent random variables

## 1. Conditional Distributions

Definition 1. Let $\underline{Z}=(X, Y)$ be a random vector of discrete type with support $E_{Z}$, joint d.f. $F_{\underline{Z}}$ and joint p.m.f. $f_{\underline{Z}}$. Then $X$ and $Y$ are discrete type random variables.

For a fixed $y$ with $P(Y=y)>0$, the function $f_{X \mid Y}(. \mid y): \mathbb{R} \longrightarrow \mathbb{R}$ defined as

$$
f_{X \mid Y}(x \mid y)=P(X=x \mid Y=y), \forall x \in \mathbb{R},
$$

is called the conditional probability mass function of $X$, given $Y=y$. Thus, the conditional probability mass function of $X$, given $Y=y$, is

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) & =P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{f_{\underline{Z}}(x, y)}{f_{Y}(y)} \\
& =\left\{\begin{array}{l}
\frac{f_{Z}(x, y)}{f_{Y}(y)}, \text { if } x \in E_{X \mid Y=y} \\
0, \text { otherwise },
\end{array}\right.
\end{aligned}
$$

where $E_{X \mid Y=y}=\left\{x \in \mathbb{R} \mid(x, y) \in E_{\underline{Z}}\right\}$ and $f_{Y}$ is the marginal p.m.f. of $Y$.
The conditional cumulative distribution function of $X$, given $Y=y$, is defined as

$$
\begin{aligned}
F_{X \mid Y}(x \mid y) & =P(X \leq x \mid Y=y) \\
& =\frac{P(X \leq x, Y=y)}{P(Y=y)} \\
& =\sum_{x_{i} \in E_{X \mid Y=y} \cap(-\infty, x]} \frac{f_{\underline{Z}}\left(x_{i}, y\right)}{f_{Y}(y)} \\
& =\sum_{x_{i} \leq x} f_{X \mid Y}\left(x_{i} \mid y\right), \text { where } x_{i} \in E_{X \mid Y=y} .
\end{aligned}
$$

In the similar manner, we can define the conditional probability mass function and conditional cumulative distribution function of $Y$, given $X=x$, provided $P(X=x)>0$.

Definition 2. Let $\underline{Z}=(X, Y)$ be a random vector of continuous type with joint c.d.f. $F_{Z}$ and joint p.d.f. $f_{Z}$. Then $X$ and $Y$ are continuous type random variables. Let $y \in \mathbb{R}$ be such that $f_{Y}(y)>0$, where $f_{Y}(y)>0$ is the marginal p.d.f. of $Y$.

The function $f_{X \mid Y}(\cdot \mid y): \mathbb{R} \longrightarrow \mathbb{R}$ defined as

$$
f_{X \mid Y}(x \mid y)=\frac{f_{\underline{Z}}(x, y)}{f_{Y}(y)}, \forall x \in \mathbb{R}
$$

is called the conditional probability density function of $X$, given $Y=y$.
Also, the conditional cumulative distribution function of $X$, given $Y=y$, is defined as

$$
\begin{aligned}
F_{X \mid Y}(x \mid y) & =\int_{-\infty}^{x} f_{X \mid Y}(t \mid y) d t \\
& =\int_{-\infty}^{x} \frac{f_{\underline{Z}}(t, y)}{f_{Y}(y)} d t
\end{aligned}
$$

In the similar manner, we can define the conditional probability density function and conditional cumulative distribution function of $Y$, given $\{X=x\}$, provided $f_{X}(x)>0$, where $f_{X}(x)>0$ is the marginal p.d.f. of $X$.

Note: Definition 1 and 2 can be generalized if we replace random variables $X$ and $Y$ by random vectors $\underline{X}$ and $\underline{Y}$.

Example 3. Let $\underline{Z}=(X, Y)$ be a random vector with joint p.d.f.

$$
f(x, y)=\left\{\begin{array}{l}
6 x y(2-x-y), \text { if } 0<x<1,0<y<1 \\
0, \text { otherwise }
\end{array}\right.
$$

Then find the conditional p.d.f. of $X$, given $Y=y$, where $0<y<1$.

Solution: The conditional p.d.f. of $X$, given $Y=y$, is

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) & =\frac{f(x, y)}{f_{Y}(y)} \\
& =\left\{\begin{array}{l}
\frac{6 x y(2-x-y)}{1}, \text { if } 0<x y(2-x-y) d x \\
0 \\
0, \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{l}
\frac{6 x(2-x-y)}{4-3 y}, \text { if } 0<x<1 \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Example 4. Let $\underline{Z}=(X, Y, Z)$ be a random vector with joint p.m.f.

$$
f(x, y, z)=\left\{\begin{array}{l}
\frac{x y z}{72}, \text { if }(x, y, z) \in\{1,2\} \times\{1,2,3\} \times\{1,3\} \\
0, \text { otherwise }
\end{array}\right.
$$

(1) Find the conditional p.m.f. of $X$, given $(Y, Z)=(2,1)$.
(2) Find the conditional p.m.f. of $(X, Z)$, given $Y=3$.

## Solution:

(1) The conditional p.m.f. of $X$, given $(Y, Z)=(2,1)$, is

$$
\begin{aligned}
f_{X \mid(Y, Z)}(x \mid(2,1)) & =\frac{f(x, 2,1)}{P((Y, Z)=(2,1))} \\
& =\left\{\begin{array}{l}
\frac{2 x}{72 P(Y=2, Z=1)}, \text { if } x \in E_{X \mid(Y, Z)=(2,1)}=\left\{x \in \mathbb{R} \mid(x, 2,1) \in E_{\underline{Z}}\right\} \\
0, \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{l}
\frac{2 x}{72 P(Y=2, Z=1)}, \text { if } x \in\{1,2\} \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Now, $P(Y=2, Z=1)=\sum_{x \in R_{(2,1)}} f(x, 2,1)$, where $R_{(2,1)}=\{x \in \mathbb{R} \quad \mid \quad(x, 2,1) \in$ $\left.E_{\underline{Z}}\right\}=\{1,2\}$. Hence, $P(Y=2, Z=1)=f(1,2,1)+f(2,2,1)=\frac{1}{12}$. Therefore,

$$
f_{X \mid(Y, Z)}(x \mid(2,1))= \begin{cases}\frac{x}{3}, & \text { if } x \in\{1,2\} \\ 0, & \text { otherwise }\end{cases}
$$

(2) The conditional p.m.f. of $X$, given $Y=3$, is

$$
\begin{aligned}
f_{(X, Z) \mid Y}((x, z) \mid 3) & =\frac{f(x, 3, z)}{P(Y=3)} \\
& =\left\{\begin{array}{l}
\frac{3 x z}{72 P(Y=3)}, \text { if } x \in E_{X, Z) \mid Y=3}=\left\{(x, z) \in \mathbb{R} \mid(x, 3, z) \in E_{\underline{Z}}\right\} \\
0, \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{l}
\frac{3 x z}{72 P(Y=3)}, \text { if }(x, z) \in\{1,2\} \times\{1,3\} \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Now, $P(Y=3)=\sum_{(x, z) \in R_{3}} f(x, 3, z)$, where $R_{3}=\left\{(x, z) \in \mathbb{R} \quad \mid \quad(x, 3, z) \in E_{\underline{Z}}\right\}=$ $\{1,2\} \times\{1,3\}$. Hence, $P(Y=3)=f(1,3,1)+f(1,3,3)+f(2,3,1)+f(2,3,3)=\frac{1}{2}$.

Therefore,

$$
f_{(X, Z) \mid Y}((x, z) \mid 3)=\left\{\begin{array}{l}
\frac{x z}{12}, \text { if } x \in\{1,2\} \times\{1,3\} \\
0, \text { otherwise }
\end{array}\right.
$$

## 2. Independent random variables

Definition 5. The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to be independent if for any sub-collection $\left\{X_{i_{1}}, X_{i_{2}}, \ldots, X_{i_{k}}\right\}, 2 \leq k \leq n$, we have

$$
F_{X_{i_{1}}, \ldots, X_{i_{k}}}\left(x_{1}, x_{2}, \cdots, x_{k}\right)=\prod_{j=1}^{k} F_{X_{i_{j}}}\left(x_{j}\right), \forall\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in \mathbb{R}^{k}
$$

where $F_{X_{i_{1}}, \ldots, X_{i_{k}}}$ is the joint c.d.f. of $\left(X_{i_{1}}, X_{i_{2}}, \ldots, X_{i_{k}}\right)$ and $F_{X_{i_{j}}}$ is the marginal c.d.f. of $X_{i_{j}}$, for $1 \leq j \leq k$.
Theorem 6. Let $\underline{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right): \mathcal{S} \longrightarrow \mathbb{R}^{n}$ be a $n$-dimensional ( $n \geq 2$ ) random vector with joint c.d.f. $F_{\underline{X}}$. Let $F_{X_{i}}$ be the marginal c.d.f. of $X_{i}$, for $1 \leq i \leq n$. Then the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent if and only if

$$
F_{\underline{X}}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\prod_{i=1}^{n} F_{X_{i}}\left(x_{i}\right), \forall\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{R}^{n} .
$$

Theorem 7. Let $\underline{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right): \mathcal{S} \longrightarrow \mathbb{R}^{n}$ be a $n$-dimensional ( $n \geq 2$ ) random vector of either discrete or continuous type. Let $f_{\underline{X}}$ be the joint p.m.f. (or p.d.f.) of $\underline{X}$ and $f_{X_{i}}$ be the marginal p.m.f. (or p.d.f.) of random variable $X_{i}$, for $1 \leq i \leq n$. Then
(1) the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent if and only if

$$
f_{\underline{X}}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i}\right), \forall\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{R}^{n} .
$$

(2) the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent $\Rightarrow E_{\underline{X}}=\prod_{i=1}^{n} E_{X_{i}}$, where $E_{\underline{X}}$ is the support of random vector $\underline{X}$ and $E_{X_{i}}$ is the support of random variable $X_{i}$, for $1 \leq i \leq n$.

Theorem 8. Let $X_{1}, X_{2}, \ldots, X_{n}$ be the independent random variables.
(1) Let $\psi_{i}: \mathbb{R} \longrightarrow \mathbb{R}$ be a function such that $\psi_{i}(A) \in \mathbb{B}_{\mathbb{R}}$, for all $A \in \mathbb{B}_{\mathbb{R}}$, for $i=1,2, \cdots, n$. Then the random variables $\psi_{1}\left(X_{1}\right), \psi_{2}\left(X_{2}\right), \ldots, \psi_{n}\left(X_{n}\right)$ are independent.
(2) For $A_{i} \in \mathbb{B}_{\mathbb{R}}, i=1,2, \cdots, n$, we have

$$
P\left(\left\{X_{i} \in A_{i}, i=1,2, \cdots, n\right\}\right)=\prod_{i=1}^{n} P\left(\left\{X_{i} \in A_{i}\right)\right.
$$

Remark 9. $\underline{X}=\left(X_{1}, X_{2}\right)$ be a random vector of either discrete or continuous type. Let $D=\left\{x_{2} \in \mathbb{R} \mid f_{X_{1} \mid X_{2}}\left(. \mid x_{2}\right)\right.$ is defined $\}$. Then for $x_{2} \in D, X_{1}$ and $X_{2}$ are independent if and only if $f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=f_{X_{1}}\left(x_{1}\right)$, for all $x_{1} \in \mathbb{R}$,
i.e,
$X_{1}$ and $X_{2}$ are independent if and only if $\forall x_{2} \in D$, the conditional distribution of $X_{1}$, given $X_{2}=x_{2}$, is the same as unconditional distribution of $X_{1}$.

Example 10. Let $\underline{Z}=(X, Y, Z)$ be a random vector with joint p.m.f.

$$
f(x, y, z)=\left\{\begin{array}{l}
\frac{x y z}{72}, \text { if }(x, y, z) \in\{1,2\} \times\{1,2,3\} \times\{1,3\} \\
0, \text { otherwise }
\end{array}\right.
$$

(1) Are $X, Y$ and $Z$ independent random variables?
(2) Are $X$ and $Z$ independent random variables?

## Solution:

(1) The supports of $X, Y$ and $Z$ are

$$
\begin{aligned}
& E_{X}=\left\{x \in \mathbb{R} \mid(x, y, z) \in E_{\underline{Z}} \text { for some }(y, z) \in \mathbb{R}^{2}\right\}=\{1,2\} \\
& E_{Y}=\left\{y \in \mathbb{R} \mid(x, y, z) \in E_{\underline{Z}} \text { for some }(x, z) \in \mathbb{R}^{2}\right\}=\{1,2,3\}
\end{aligned}
$$

and

$$
E_{Z}=\left\{z \in \mathbb{R} \mid(x, y, z) \in E_{\underline{Z}} \text { for some }(x, y) \in \mathbb{R}^{2}\right\}=\{1,3\}
$$

respectively. For $x \in E_{X}, R_{x}=\left\{(y, z) \in \mathbb{R}^{2} \mid(x, y, z) \in E_{\underline{Z}}\right\}=\{1,2,3\} \times\{1,3\}$. So the marginal p.m.f. of $X$ is

$$
\begin{aligned}
f_{X}(x) & =\left\{\begin{array}{l}
\sum_{(y, z) \in R_{x}} f(x, y, z), \text { if } x \in E_{X} \\
0, \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{l}
\frac{x}{3}, \text { if } x \in\{1,2\} \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Similarly the marginal p.m.f. of $Y$ and $Z$ are

$$
f_{Y}(y)= \begin{cases}\frac{y}{6}, & \text { if } y \in\{1,2,3\} \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
f_{Z}(z)=\left\{\begin{array}{l}
\frac{z}{4}, \text { if } y \in\{1,3\} \\
0, \text { otherwise }
\end{array}\right.
$$

respectively. Clearly $f(x, y, z)=f_{X}(x) f_{Y}(y) f_{Z}(z)$, for all $(x, y, z) \in \mathbb{R}^{3}$. Thus $X, Y$ and $Z$ are independent.
(2) Let $\underline{X}=(X, Y)$. The support of $\underline{X}$ is $E_{\underline{X}}=\left\{(x, z) \in \mathbb{R}^{2} \mid(x, y, z) \in E_{\underline{Z}}\right.$ for some $y \in$ $\mathbb{R}\}=\{1,2\} \times\{1,3\}$. For $(x, z) \in E_{\underline{X}}, \bar{R}_{(x, z)}=\left\{x \in \mathbb{R} \mid(x, y, z) \in E_{\underline{Z}}\right\}=\{1,2,3\}$.

So the marginal p.m.f. of $\underline{X}$ is

$$
\begin{aligned}
f_{\underline{X}}(x, z) & =\left\{\begin{array}{l}
\sum_{y \in R_{(x, z)}} f(x, y, z), \text { if }(x, z) \in E_{\underline{X}} \\
0, \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{l}
\frac{x z}{12}, \text { if }(x, z) \in\{1,2\} \times\{1,3\} \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Thus $f_{\underline{X}}(x, z)=f_{X}(x) f_{Z}(z)$, for all $(x, z) \in \mathbb{R}^{2}$. Thus $X$ and $Z$ are independent.
Example 11. Let $\underline{Z}=(X, Y)$ be a random vector with joint p.d.f.

$$
f_{\underline{Z}}(x, y)= \begin{cases}\frac{1}{x}, & \text { if } 0<y<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

Are $X$ and $Y$ independent?
Solution: By Example 7 of Lecture 14, the marginal p.d.f. of $X$ and $Y$ are

$$
f_{X}(x)=\left\{\begin{array}{l}
1, \text { if } 0<x<1 \\
0, \text { otherwise }
\end{array}\right.
$$

and

$$
f_{Y}(y)=\left\{\begin{array}{l}
-\ln y, \text { if } 0<y<1 \\
0, \text { otherwise }
\end{array}\right.
$$

Clearly, $f_{\underline{Z}}(x, y) \neq f_{X}(x) f_{Y}(y)$. Hence, $X$ and $Y$ are not independent.
Alternative solution: The support of $\underline{Z}$ is $E_{\underline{Z}}=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<y<x<1\right\}$, and the support of $X$ and $Y$ are $(0,1)$. Hence, $E_{\underline{Z}} \neq E_{X} \times E_{Y}$. Therefore, $X$ and $Y$ are not independent.

