Types of Random Vector

Let (\mathcal{S}, Σ, P) be a probability space and let $\underline{X}=(X, Y): \mathcal{S} \longrightarrow \mathbb{R}^{2}$ be a random vector with joint distribution function $F_{\underline{X}}$.

Notations.

- Let $\mathbb{B}_{\mathbb{R}^{n}}$ denote the set which contains all rectangles (Cartesian product of open, closed and semi-closed intervals) and their countable union and intersection.
- Let I_{n} be a rectangle in \mathbb{R}^{n}. We will denote by $\mathbb{B}_{I_{n}}$ the set which contains all rectangles contained in I_{n} and their countable union and intersection.
Definition 1. \underline{X} is a said to be a random vector of discrete type if there exists a nonempty finite or countable set $E_{\underline{X}} \subset \mathbb{R}^{2}$ such that $P(\underline{X}=\underline{x})>0$, for every $\underline{x} \in E_{\underline{X}}$, and $P\left(\underline{X} \in E_{\underline{X}}\right)=1$.

The set $E_{\underline{X}}$ is called the support of \underline{X}.
The function $f_{\underline{X}}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f_{\underline{X}}(\underline{x})=P(\underline{X}=\underline{x})=P(X=x, Y=y)
$$

is called the joint probability mass function of \underline{X}.
Remark 2. Let \underline{X} be a random vector of discrete type with support $E_{\underline{X}}$, joint d.f. $F_{\underline{X}}$ and joint p.m.f. $f_{\underline{X}}$.
(1) $\sum_{\underline{x} \in E_{\underline{X}}} f_{\underline{X}}(\underline{x})=1$. Moreover, $P\left(\underline{X} \in E_{\underline{X}}^{c}\right)=0$ and $f_{\underline{X}}(\underline{x})=0, \forall \underline{x} \in E_{\underline{X}}^{c}$.
(2) For any $A \in \mathbb{B}_{\mathbb{R}^{2}}$,

$$
P(\underline{X} \in A)=\sum_{\underline{x} \in A \cap E_{\underline{X}}} f_{\underline{X}}(\underline{x})=\sum_{\underline{x} \in E_{\underline{X}}} f_{\underline{X}}(\underline{x}) I_{A}(\underline{x}) .
$$

(3) For $\underline{x} \in \mathbb{R}^{2}$,

$$
F_{\underline{X}}(\underline{x})=P(\underline{X} \in(-\underline{\infty}, \underline{x}])=\sum_{\underline{x} \in(-\underline{\infty}, \underline{x}] \cap E_{\underline{X}}} f_{\underline{X}}(\underline{x}) .
$$

Definition 3. \underline{X} is a said to be a random vector of continuous type if there exists a nonnegative function $f_{\underline{X}}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
F_{\underline{X}}\left(x_{1}, x_{2}\right)=\int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} f_{\underline{X}}(x, y) d y d x
$$

The set $E_{\underline{X}}=\left\{\underline{x} \in \mathbb{R}^{2}: f_{\underline{X}}(\underline{x})>0\right\}$ is called the support of \underline{X}.
The function $f_{\underline{X}}$ is called the joint probability density function of \underline{X}.
Remark 4. Let \underline{X} be a random vector of continuous type with support $E_{\underline{X}}$, joint d.f. $F_{\underline{X}}$ and joint p.d.f. $f_{\underline{X}}$.
(1) For any $\underline{x} \in \mathbb{R}^{2}, f_{\underline{X}}(\underline{x}) \geq 0$, and

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\underline{X}}(x, y) d y d x=1
$$

(2) For any $\underline{x} \in \mathbb{R}^{2}, P(\underline{X}=\underline{x})=0$. Consequently, for any countable set $S \subset \mathbb{R}^{2}$, $P(\underline{X} \in S)=0$.
(3) Let $\underline{a}=\left(a_{1}, a_{2}\right), \underline{b}=\left(b_{1}, b_{2}\right) \in \mathbb{R}^{2}$ such that $a_{i}<b_{i}, i=1,2$. Let $(\underline{a}, \underline{b}]=$ $\left(a_{1}, \bar{a}_{2}\right] \times\left(b_{1}, b_{2}\right]$. Then

$$
P(\underline{X} \in(\underline{a}, \underline{b}])=P\left(a_{1}<X \leq b_{1}, a_{2}<Y \leq b_{2}\right)=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f_{\underline{X}}(x, y) d y d x .
$$

Theorem 5. Let $\underline{X}=(X, Y): \mathcal{S} \longrightarrow \mathbb{R}^{2}$ be a random vector with joint distribution function $F_{\underline{X}}$.
(1) Suppose that \underline{X} is of discrete type with support $E_{\underline{X}}$ and joint p.m.f. $f_{\underline{X}}$. Define

$$
R_{x}=\left\{y \in \mathbb{R}:(x, y) \in E_{\underline{X}}\right\}, R_{y}=\left\{x \in \mathbb{R}:(x, y) \in E_{\underline{X}}\right\} .
$$

Then X and Y are of discrete type with support

$$
E_{X}=\left\{x \in \mathbb{R}:(x, y) \in E_{\underline{X}} \text { for some } y \in \mathbb{R}\right\}
$$

and

$$
E_{Y}=\left\{y \in \mathbb{R}:(x, y) \in E_{\underline{X}} \text { for some } x \in \mathbb{R}\right\}
$$

respectively. The marginal p.m.f.s of X and Y are respectively given by

$$
f_{X}(x)=\left\{\begin{array}{l}
\sum_{y \in R_{x}} f_{\underline{X}}(x, y), \text { if } x \in E_{X} \\
0, \text { otherwise },
\end{array}\right.
$$

and

$$
f_{Y}(y)=\left\{\begin{array}{l}
\sum_{x \in R_{y}} f_{\underline{X}}(x, y), \text { if } y \in E_{Y} \\
0, \text { otherwise }
\end{array}\right.
$$

(2) Suppose that \underline{X} is of continuous type with support $E_{\underline{X}}$ and joint p.d.f. $f_{\underline{X}}$. Then X and Y are of continuous type with marginal p.d.f.s given by

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{\underline{X}}(x, y) d y \text { and } f_{Y}(y)=\int_{-\infty}^{\infty} f_{\underline{X}}(x, y) d x
$$

respectively.
Example 6. Let $\underline{X}=(X, Y)$ be a random vector with joint p.m.f.

$$
f_{\underline{X}}(x, y)=\left\{\begin{array}{l}
c y, \text { if }(x, y) \in A \\
0, \text { otherwise }
\end{array}\right.
$$

where $A=\{(a, b): a, b \in\{1,2, \ldots, n\}, a \leq b\}, n \geq 2$ is a fixed integer and c is a constant.
(1) Find the value of c.
(2) Find the marginal p.m.f.s of X and Y.
(3) Find $P(X>Y), P(X=Y)$ and $P(X<Y)$.

Solution.

(1) Clearly $c>0$. The support $E_{\underline{X}}$ is A. Therefore, $\sum_{(x, y) \in E_{\underline{X}}} f_{\underline{X}}(x, y)=1$. This implies that $c \sum_{y=1}^{n} \sum_{x=1}^{y} y=1$ or $c \sum_{y=1}^{n} y^{2}=1$. Thus, $c=\frac{6}{n(n+1)(2 n+1)}$.
(2) The support of X is $E_{X}=\{1,2, \ldots, n\}$ and the support of Y is $E_{Y}=\{1,2, \ldots, n\}$. For $x \in E_{X}$, we have $R_{x}=\{x, x+1, \ldots, n\}$ and

$$
\sum_{y \in R_{x}} f_{\underline{X}}(x, y)=c \sum_{y=x}^{n} y=c\left[\frac{n(n+1)}{2}-\frac{(x-1) x}{2}\right] .
$$

The marginal p.m.f. of X is then

$$
f_{X}(x)=\left\{\begin{array}{l}
\frac{3[n(n+1)-(x-1) x]}{n(n+1)(2 n+1)}, \text { if } x \in E_{X}, \\
0, \text { otherise } .
\end{array}\right.
$$

For $y \in E_{Y}$, we have $R_{y}=\{1,2, \ldots, y\}$ and

$$
\sum_{x \in R_{y}} f_{\underline{X}}(x, y)=c \sum_{x=1}^{y} y=c y^{2} .
$$

The marginal p.m.f. of Y is then

$$
f_{Y}(y)=\left\{\begin{array}{l}
\frac{3 y^{2}}{n(n+1)(2 n+1)}, \text { if } x \in E_{Y}, \\
0, \text { otherise }
\end{array}\right.
$$

(3) Let $A=\{(a, b): a>b\}$ and $B=\{(a, b): a=b\}$. Then

$$
\begin{aligned}
P(X>Y) & =P(\underline{X} \in A) \\
& =\sum_{(x, y) \in E_{\underline{X}} \cap A} f_{\underline{X}}(x, y) \\
& =0 . \\
P(X=Y) & =P(\underline{X} \in B) \\
& =\sum_{(x, y) \in E_{\underline{X}} \cap B} f_{\underline{X}}(x, y) \\
& =c \sum_{y=1}^{n} y=\frac{3}{2 n+1} .
\end{aligned}
$$

Therefore, $P(X<Y)=\frac{2(n-1)}{2 n+1}$.
Example 7. Let $\underline{X}=(X, Y)$ be a random vector with joint p.d.f.

$$
f_{\underline{X}}(x, y)= \begin{cases}\frac{c}{x}, & \text { if } 0<y<x<1, c \in \mathbb{R} \\ 0, & \text { otherwise } .\end{cases}
$$

(1) Find the value of c.
(2) Find the marginal p.d.f.s of X and Y.
(3) Find $P(X>2 Y)$.

Solution.

(1) Since $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\underline{X}}(x, y) d x d y=1$. This implies that $c \int_{0}^{1} \int_{0}^{x} \frac{1}{x} d y d x=1$ or $c \int_{0}^{1} d x=$ 1 or $c=1$.
(2) The marginal p.d.f. of X is given by

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f_{\underline{X}}(x, y) d y \\
& = \begin{cases}\int_{0}^{x} \frac{1}{x} d y, \text { if } 0<x<1, \\
0, & \text { otherwise }\end{cases} \\
& = \begin{cases}1, & \text { if } 0<x<1, \\
0, & \text { otherwise } .\end{cases}
\end{aligned}
$$

The marginal p.d.f. of Y is given by

$$
\begin{aligned}
f_{Y}(y) & =\int_{-\infty}^{\infty} f_{\underline{X}}(x, y) d x \\
& =\left\{\begin{array}{l}
\int_{y}^{1} \frac{1}{x} d x, \text { if } 0<y<1, \\
0, \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{l}
-\ln y, \text { if } 0<y<1, \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

(3) Let $A=\{(x, y): x>2 y\}$. Then

$$
\begin{aligned}
P(X>2 Y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\underline{X}}(x, y) I_{A}(x, y) d y d x \\
& =\iint_{0<2 y<x<1} \frac{1}{x} d y d x \\
& =\int_{0}^{1} \int_{0}^{x / 2} \frac{1}{x} d y d x \\
& =\frac{1}{2} .
\end{aligned}
$$

