Random Vector

Let (\mathcal{S}, Σ, P) be a probability space. A (univariate) random variable describes a numerical quantity of a typical outcome of a random experiment. In many experiments an observation is expressed as a family of several separate numerical quantities and we may be interested in simultaneously studying all of them together. Consider the following example.

Example 1. Two distinguishable dice (labelled as D_{1} and D_{2}) are thrown simultaneously. The sample space is $\mathcal{S}=\{(i, j): i, j \in\{1,2, \ldots, 6\}\}$. For $(i, j) \in \mathcal{S}$ define

$$
X_{1}((i, j))=i+j=\text { sum of number of dots on uppermost faces of two dice }
$$

and
$X_{2}((i, j))=|i-j|=$ absolute difference of number of dots on uppermost faces of two dice.

It may be of interest to study numerical characteristics X_{1} and X_{2} simultaneously. These considerations lead to the study of the function $\underline{X}=\left(X_{1}, X_{2}\right): \mathcal{S} \rightarrow \mathbb{R}$

Notations.

- We denote by \mathbb{R}^{n} the n-dimensional Euclidean space, i.e.,

$$
\mathbb{R}^{n}=\left\{\underline{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \mathbb{R}, i=1,2, \ldots, n\right\} .
$$

- For $i=1,2, \ldots, n$, let $X_{i}: \mathcal{S} \rightarrow \mathbb{R}$ be any functions. Then the function $\underline{X}=$ $\left(X_{1}, X_{2}, \ldots, X_{n}\right): \mathcal{S} \rightarrow \mathbb{R}^{n}$ is defined as

$$
\underline{X}(w)=\left(X_{1}(w), X_{2}(w), \ldots, X_{n}(w)\right), w \in \mathcal{S} .
$$

- For $A \subseteq \mathbb{R}^{n}$,

$$
\underline{X}^{-1}(A)=\{w \in \mathcal{S}: \underline{X}(w) \in A\}
$$

- For $\underline{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, we denote by $(-\underline{\infty}, \underline{x}]$ the n-dimensional interval

$$
(-\underline{\infty}, \underline{x}]=\left(-\infty, x_{1}\right] \times\left(-\infty, x_{2}\right] \times \cdots \times\left(-\infty, x_{n}\right] .
$$

Definition 2. A function $\underline{X}: \mathcal{S} \longrightarrow \mathbb{R}^{n}$ is called an n-dimensional random vector $(R V)$ if $\underline{X}^{-1}((-\underline{\infty}, \underline{x}]) \in \Sigma$, for all $\underline{x} \in \mathbb{R}^{n}$. That is, $\left\{w \in \mathcal{S}: X_{1}(w) \leq x_{1}, X_{2}(w) \leq\right.$ $\left.x_{2}, \ldots, X_{n}(w) \leq x_{n}\right\} \in \Sigma$.
Example 3. Let $A, B \subseteq \mathcal{S}$. Define $\underline{X}=\left(X_{1}, X_{2}\right): \mathcal{S} \rightarrow \mathbb{R}^{2}$ by

$$
X_{1}(w)=I_{A}(w)=\left\{\begin{array}{l}
1, \text { if } w \in A \\
0, \text { if } w \notin A
\end{array}\right.
$$

and

$$
X_{2}(w)=I_{B}(w)=\left\{\begin{array}{l}
1, \text { if } w \in B \\
0, \text { if } w \notin B
\end{array}\right.
$$

Then \underline{X} is an $R V$ if and only if A and B are events. (Prove!)
Theorem 4. Let $\underline{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right): \mathcal{S} \rightarrow \mathbb{R}^{n}$ be a given function. Then \underline{X} is a random vector if and only if $X_{1}, X_{2}, \ldots, X_{n}$ are random variables.

Proof. Exercise.
Remark 5. If \mathcal{S} is finite or countable and $\Sigma=\mathcal{P}(\Sigma)$, then any function $\underline{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$: $\mathcal{S} \rightarrow \mathbb{R}^{n}$ is a random vector.

Joint Cumulative Distribution Function

Definition 6. Let $\underline{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right): \mathcal{S} \rightarrow \mathbb{R}^{n}$ be a random vector. The function $F_{\underline{X}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, defined by,
$F_{\underline{X}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(\left\{w \in \mathcal{S}: X_{1}(w) \leq x_{1}, X_{2}(w) \leq x_{2}, \ldots, X_{n}(w) \leq x_{n}\right\}\right), \forall \underline{x} \in \mathbb{R}^{n}$,
is called the joint cumulative distribution function (joint c.d.f) or the joint distribution function (d.f) of the random vector \underline{X}.

The joint distribution function of any subset of random variables $X_{1}, X_{2}, \ldots, X_{n}$ is called a marginal distribution function of $F_{\underline{X}}$.

Remark 7. (1) As in the case of random variables, the set $\left\{w \in \mathcal{S}: X_{1}(w) \leq\right.$ $\left.x_{1}, X_{2}(w) \leq x_{2}, \ldots, X_{n}(w) \leq x_{n}\right\}$ will be denoted by $\left\{X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{n} \leq\right.$ $\left.x_{n}\right\}$.
(2) In this course, we will mainly study 2- (and sometimes 3-) dimensional random vectors.
(3) Let $\underline{X}=(X, Y): \mathcal{S} \rightarrow \mathbb{R}^{2}$ be a random vector. The joint c.d.f. is a map $F_{\underline{X}}$: $\mathbb{R}^{2} \rightarrow \mathbb{R}$, defined by,

$$
F_{\underline{X}}(x, y)=P(\{X \leq x, Y \leq y\})
$$

(4) The c.d.f. of X and Y are called a marginal c.d.f. of $F_{\underline{X}}$.

Proposition 8. Let $\underline{X}=(X, Y): \mathcal{S} \rightarrow \mathbb{R}^{2}$ be a random vector with joint c.d.f. $F_{\underline{X}}$. Then the marginal c.d.f. of X and Y are given by

$$
F_{X}(x)=\lim _{y \rightarrow \infty} F_{\underline{X}}(x, y) \text { and } F_{Y}(y)=\lim _{x \rightarrow \infty} F_{\underline{X}}(x, y)
$$

Remark 9. Let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in \mathbb{R}^{2}$. Then we know that

$$
P(a<X \leq b)=P(X \leq b)-P(X \leq a)=F_{X}(b)-F_{X}(a)
$$

Now,

$$
\begin{aligned}
& P\left(a_{1}<X \leq b_{1}, a_{2}<Y \leq b_{2}\right) \\
& =P\left(a_{1}<X \leq b_{1}, Y \leq b_{2}\right)-P\left(a_{1}<X \leq b_{1}, Y \leq a_{2}\right) \\
& =\left[P\left(X \leq b_{1}, Y \leq b_{2}\right)-P\left(X \leq a_{1}, Y \leq b_{2}\right)\right] \\
& \quad-\left[P\left(X \leq b_{1}, Y \leq a_{2}\right)-P\left(X \leq a_{1}, Y \leq a_{2}\right)\right] \\
& =F_{\underline{X}}\left(b_{1}, b_{2}\right)-F_{\underline{X}}\left(a_{1}, b_{2}\right)-F_{\underline{X}}\left(b_{1}, a_{2}\right)+F_{\underline{X}}\left(a_{1}, a_{2}\right) .
\end{aligned}
$$

Theorem 10. Let $F_{\underline{X}}$ be the joint cumulative distribution function of a random vector $\underline{X}=(X, Y)$. Then
(1) $\lim _{\substack{x \rightarrow \infty \\ y \rightarrow \infty}} F_{\underline{X}}(x, y)=1$.
(2) $\lim _{y \rightarrow-\infty} F_{\underline{X}}(x, y)=0$ and $\lim _{x \rightarrow-\infty} F_{\underline{X}}(x, y)=0$.
(3) $F_{\underline{X}}(x, y)$ is right continuous and nondecreasing in each argument (keeping other argument fixed).
(4) For each $\left(a_{1}, b_{1}\right] \times\left(a_{2}, b_{2}\right]$ in \mathbb{R}^{2},

$$
\Delta=F_{\underline{X}}\left(b_{1}, b_{2}\right)-F_{\underline{X}}\left(a_{1}, b_{2}\right)-F_{\underline{X}}\left(b_{1}, a_{2}\right)+F_{\underline{X}}\left(a_{1}, a_{2}\right) \geq 0 .
$$

Theorem 11. Let $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function which satisfies properties (1) - (4) of Theorem 10. Then there exists a probability space (\mathcal{S}, Σ, P) and a random vector $\underline{X}=$ $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ defined on (\mathcal{S}, Σ, P) such that G is the distribution function of \underline{X}.

Example 12. Let $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
G(x, y)=\left\{\begin{array}{l}
x, \text { if } 0 \leq x<1, y \geq 1 \\
y^{2}, \text { if } x \geq 1,0 \leq y<1 \\
1, \text { if } x \geq 1, y \geq 1 \\
0, \text { otherwise }
\end{array}\right.
$$

Show that G is not a distribution function of any random vector (X, Y).
Solution. Clearly G satisfies properties (1) - (3) of Theorem 10 .
For $\left(a_{1}, b_{1}\right] \times\left(a_{2}, b_{2}\right]$, where $a_{1}, a_{2} \in[0,1), b_{1}, b_{2} \in[1, \infty)$ and $a_{1}+a_{2}^{2}>1$. Then

$$
G\left(b_{1}, b_{2}\right)-G\left(a_{1}, b_{2}\right)-G\left(b_{1}, a_{2}\right)+G\left(a_{1}, a_{2}\right)=1-a_{1}-a_{2}^{2}+0<0 .
$$

Thus, G is not a joint c.d.f. of any random vector.
Example 13. Consider the function $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
G(x, y)=\left\{\begin{array}{l}
x y^{2}, \text { if } 0 \leq x<1,0 \leq y<1 \\
x, \text { if } 0 \leq x<1, y \geq 1 \\
y^{2}, \text { if } x \geq 1,0 \leq y<1 \\
1, \text { if } x \geq 1, y \geq 1 \\
0, \text { otherwise }
\end{array}\right.
$$

(1) Show that G is a joint c.d.f. of some random vector (X, Y).
(2) Find the marginal c.d.f. of X and Y.

Solution. Clearly $\lim _{\substack{x \rightarrow \infty \\ y \rightarrow \infty}} G(x, y)=1$. For fixed $x \in \mathbb{R}, \lim _{y \rightarrow-\infty} G(x, y)=0$ and for fixed $\left.y \in \mathbb{R}, \lim _{x \rightarrow-\infty} G_{(} x, y\right)=0$.

We note that if $y<0$, then $G(x, y)=0$ for all $x \in \mathbb{R}$. Moreover,

$$
G(x, y)=\left\{\begin{array}{l}
0, \text { if } x<0 \\
x y^{2}, \text { if } 0 \leq x<1,0 \leq y<1 \\
y^{2}, \text { if } x \geq 1,
\end{array}\right.
$$

and

$$
G(x, y)=\left\{\begin{array}{l}
0, \text { if } x<0 \\
x, \text { if } 0 \leq x<1, y \geq 1 \\
1, \text { if } x \geq 1
\end{array}\right.
$$

One can see that for $y \in \mathbb{R}, G(x, y)$ is a continuous (and hence right continuous) function of x. Similarly, for each $x \in \mathbb{R}, G(x, y)$ is a continuous function of y

Furthermore, $G(x, y)$ is non-decreasing in each argument keeping other argument fixed.
For $\left(a_{1}, b_{1}\right] \times\left(a_{2}, b_{2}\right]$, we need to show that $\Delta=G\left(b_{1}, b_{2}\right)-G\left(a_{1}, b_{2}\right)-G\left(b_{1}, a_{2}\right)+$ $G\left(a_{1}, a_{2}\right) \geq 0$. We consider the following cases.
(1) $a_{1}<0$. Then $\Delta=G\left(b_{1}, b_{2}\right)-G\left(b_{1}, a_{2}\right) \geq 0$ as G is nondecreasing.
(2) $a_{2}<0$.
(3) $0 \leq a_{1}<1,0 \leq a_{2}<1,0 \leq b_{1}<1,0 \leq b_{2}<1$.
(4) $0 \leq a_{1}<1,0 \leq a_{2}<1,0 \leq b_{1}<1, b_{2} \geq 1$.
(5) $0 \leq a_{1}<1,0 \leq a_{2}<1, b_{1} \geq 1,0 \leq b_{2}<1$.
(6) $0 \leq a_{1}<1,0 \leq a_{2}<1, b_{1} \geq 1, b_{2} \geq 1$.
(7) $0 \leq a_{1}<1, a_{2} \geq 1,0 \leq b_{1}<1, b_{2} \geq 1$.
(8) $0 \leq a_{1}<1, a_{2} \geq 1, b_{1} \geq 1, b_{2} \geq 1$.
(9) $a_{1} \geq 1,0 \leq a_{2}<1, b_{1} \geq 1,0 \leq b_{2}<1$.
(10) $a_{1} \geq 1,0 \leq a_{2}<1, b_{1} \geq 1, b_{2} \geq 1$.
(11) $a_{1} \geq 1, a_{2} \geq 1, b_{1} \geq 1, b_{2} \geq 1$.

In all these cases verify that $\Delta \geq 0$.
Therefore, $G(x, y)$ is a distribution function of some random vector (X, Y).
The marginal c.d.f. of X and Y are respectively

$$
F_{X}(x)=\lim _{y \rightarrow \infty} G(x, y)=\left\{\begin{array}{l}
0, \text { if } x<0 \\
x, \text { if } 0 \leq x<1 \\
1, \text { if } x \geq 1
\end{array}\right.
$$

and

$$
F_{Y}(y)=\lim _{x \rightarrow \infty} G(x, y)=\left\{\begin{array}{l}
0, \text { if } y<0 \\
y^{2}, \text { if } 0 \leq y<1 \\
1, \text { if } y \geq 1
\end{array}\right.
$$

