Hypergeometric and Poisson Distribution

1. Hypergeometric Distribution

Consider a population comprising of $N(\geq 2)$ units out of which $a(\in\{1,2, \ldots, N-1\})$ are labeled as s (success) and $N-a$ are labeled as f (failure). A sample of size n is drawn from this population drawing one unit at a time. Let

$$
X=\text { number of successes in drawn sample }
$$

Case I: Suppose draws are independent and sampling is with replacement (i.e., after each draw the drawn unit is replaced back into the population). Then we have a sequence of n independent Bernoulli trials with probability of success in each trial is $p=\frac{a}{N}$ and, therefore $X \sim \operatorname{Bin}\left(n, \frac{a}{N}\right)$.

Case II: Suppose sampling is without replacement (i.e., after each draw the drawn unit is not replaced back into the population).

$$
\begin{aligned}
& P(\text { obtaining } s \text { in first draw })=\frac{a}{N} ; \\
& P(\{\text { obtaining } s \text { in second draw }\})=\frac{a}{N} \cdot \frac{a-1}{N-1}+\frac{N-a}{N} \cdot \frac{a}{N-1}=\frac{a}{N} ; \\
& P(\{\text { obtaining } s \text { in third draw }\})=\frac{a}{N} \cdot \frac{a-1}{N-1} \cdot \frac{a-2}{N-2}+\frac{a}{N} \cdot \frac{N-a}{N-1} \cdot \frac{a-1}{N-2} \\
& +\frac{N-a}{N} \cdot \frac{a}{N-1} \cdot \frac{a-1}{N-2}+\frac{N-a}{N} \cdot \frac{N-a-1}{N-1} \cdot \frac{a}{N-2}=\frac{a}{N} ;
\end{aligned}
$$

In general, $P(\{$ obtaining s in $k-$ th draw $\})=\frac{a}{N}$.
Remark 1. P (obtaining s in first draw $)=\frac{a}{N} \cdot \frac{a-1}{N-1}$ and
$P($ obtaining s in first and second draw $) P($ obtaining s in second draw $)=\frac{a}{N} \cdot \frac{a}{N}$
This implies that the draws are not independent. Therefore, we cannot conclude that $X \sim \operatorname{Bin}\left(n, \frac{a}{N}\right)$.

For $P(\{X=x\}) \neq 0$, we have $0 \leq x \leq n, 0 \leq x \leq a$ and $0 \leq n-x \leq N-a$. Thus $P(\{X=x\}) \neq 0, x \in\{\max (0, n-N+a), \ldots, \min (n, a)\}$. Therefore the r.v. X is of discrete type with support $E_{X}=\{\max (0, n-N+a), \ldots, \min (n, a)\}$ and p.m.f.

$$
f_{X}(x)=P(\{X=x\})=\left\{\begin{array}{l}
\frac{\binom{a}{x}\binom{N-a}{n-x}, \text { if } x \in\{\max (0, n-N+a), \ldots, \min (n, a)\}}{\binom{N}{n}} 0, \text { otherwise } \tag{1}
\end{array}\right.
$$

The random variable X is called a Hypergeometric random variable and it is written as $X \sim \operatorname{Hyp}(a, n, N)$. The probability distribution with the p.m.f. (1) is called a Hypergeometric distribution. Also, we have

$$
\begin{equation*}
\sum_{x=\max (0, n-N+a)}^{\min (n, a)}\binom{a}{x}\binom{N-a}{n-x}=\binom{N}{n} \tag{2}
\end{equation*}
$$

Now, the expectation of $X \sim \operatorname{Hyp}(a, n, N)$ is

$$
\begin{aligned}
& E(X)=\sum_{x \in E_{X}} x f_{X}(x) \\
& =\frac{1}{\binom{N}{n}} \sum_{x=\max (0, n-N+a)}^{\min (n, a)} x\binom{a}{x}\binom{N-a}{n-x} \\
& =\frac{a}{\binom{N}{n}} \sum_{x=\max (1, n-N+a)}^{\min (n, a)}\binom{a-1}{x-1}\binom{N-a}{n-x} \\
& =\frac{a}{\binom{N}{n}} \sum_{x=\max (0, n-N+a-1)}^{\min (n-1, a-1)}\binom{a-1}{x}\binom{(N-1)-(a-1)}{(n-1)-x} \\
& =\frac{a\binom{N-1}{n-1}}{\binom{N}{n}} \\
& =\frac{a n}{N} \text {; } \\
& E\left(X^{2}\right)=\sum_{x \in E_{X}} x^{2} f_{X}(x) \\
& =\frac{1}{\binom{N}{n}} \sum_{x=\max (0, n-N+a)}^{\min (n, a)} x^{2}\binom{a}{x}\binom{N-a}{n-x}=\frac{1}{\binom{N}{n}} \sum_{x=\max (1, n-N+a)}^{\min (n, a)} x \frac{a!}{(a-x)!(x-1)!}\binom{N-a}{n-x} \\
& =\frac{1}{\binom{N}{n}} \sum_{x=\max (1, n-N+a)}^{\min (n, a)}(x-1+1) \frac{a!}{(a-x)!(x-1)!}\binom{N-a}{n-x} \\
& =\frac{1}{\binom{N}{n}}\left\{a \sum_{x=\max (1, n-N+a)}^{\min (n, a)}\binom{a-1}{x-1}\binom{N-a}{n-x}+a(a-1) \sum_{x=\max (2, n-N+a)}^{\min (n, a)}\binom{a-2}{x-2}\binom{N-a}{n-x}\right\} \\
& =\frac{1}{\binom{N}{n}}\left\{\begin{array}{l}
a \sum_{x=\max (0, n-N+a-1)}^{\min (n-1, a-1)} \\
x
\end{array}\right)\left(\begin{array}{c}
a-1 \\
x-1)-(a-1) \\
(n-1)-x
\end{array}\right)+a(a-1) \\
& \left.\sum_{x=\max (0, n-N+a-2)}^{\min (n-2, a-2)}\binom{a-2}{x}\binom{(N-2)-(a-2)}{(n-2)-x}\right\} \\
& =\frac{a\binom{N-1}{n-1}}{\binom{N}{n}}+\frac{a(a-1)\binom{N-2}{n-2}}{\binom{N}{n}} \\
& =\frac{a n}{N}+\frac{a(a-1) n(n-1)}{N(N-1)} \text {; }
\end{aligned}
$$

$\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=\frac{a n}{N}+\frac{a(a-1) n(n-1)}{N(N-1)}-\frac{a^{2} n^{2}}{N^{2}}=n\left(\frac{a}{N}\right)\left(1-\frac{a}{N}\right)\left(\frac{N-n}{N-1}\right)$.

Example 2. An urn contains 6 red balls and 14 black balls. 5 balls are drawn randomly without replacement. What is the probability that exactly 4 red balls are drawn?

Solution: Let us label the drawing of a red as success and the drawing of a black as a failure. Let X be the number of red balls drawn. Then $X \sim \operatorname{Hyp}(6,5,20)$. Hence, the required probability is $P(\{X=4\})=\frac{\binom{6}{4}\binom{14}{1}}{\binom{20}{5}}$.

2. Poisson Distribution

Suppose some event E is occurring randomly over a period of time. Let X be the number of times the event E has occurred in an unit interval (say $(0,1])$.

Assumptions:

(1) For each infinitesimal subinterval $\left(\frac{k-1}{n}, \frac{k}{n}\right], k=1,2, \ldots, n$, the probability that the event E will occur in this subinterval is $\frac{\lambda}{n}$ and the probability that the event E will not occur in this subinterval is $1-\frac{\lambda}{n}$, where $\lambda>0$ is a given constant;
(2) chance of two or more occurrences of the event E in each infinitesimal subinterval $\left(\frac{k-1}{n}, \frac{k}{n}\right], k=1,2, \ldots, n$, is so small that it can be neglected;
(3) if $\left(\frac{j-1}{n}, \frac{j}{n}\right]$ and $\left(\frac{k-1}{n}, \frac{k}{n}\right](1 \leq j<k \leq n)$ are disjoint subintervals then the number of times the event E occurs in the interval $\left(\frac{j-1}{n}, \frac{j}{n}\right]$ is independent of the number of times the event E occurs in the interval $\left(\frac{k-1}{n}, \frac{k}{n}\right]$.

Remark 3. Such type of events is known as rare events. It means that two such events are extremely unlikely to occur simultaneously or within a very short period of time. Arrivals of jobs, telephone calls, e-mail messages, traffic accidents, network blackouts, virus attacks, errors in software, floods, and earthquakes are examples of rare events.

Under the above assumptions, in each infinitesimal subinterval $\left(\frac{k-1}{n}, \frac{k}{n}\right], k=1,2, \ldots, n$, event E can occur only 1 or 0 times and the probability of occurrence of event E in each of these subintervals is the same $\left(\frac{\lambda}{n}\right)$. If we label the occurrence of event E in any of these subintervals as success and its non-occurrence as failure, then we have a sequence of n independent Bernoulli trials with probability of success in each trial as $p_{n}=\frac{\lambda}{n}$. Therefore, $X \equiv X_{n} \sim \operatorname{Bin}\left(n, p_{n}\right)$, where $p_{n}=\frac{\lambda}{n}$. The p.m.f. of X is given by

$$
\begin{aligned}
f_{n}(k) & =\binom{n}{k} p_{n}^{x}\left(1-p_{n}\right)^{n-k}, \text { if } k=1,2, \ldots, n \\
& =\frac{1}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right)\left(n p_{n}\right)^{k}\left(1-\frac{n p_{n}}{n}\right)^{n}\left(1-p_{n}\right)^{-k} \text { if } k=1,2, \ldots, n
\end{aligned}
$$

Since $n p_{n}=\lambda$ and $p_{n} \rightarrow 0$ as $n \rightarrow \infty, f_{n}(k) \rightarrow \frac{e^{-\lambda \lambda^{k}}}{k!}$ as $n \rightarrow \infty$.
Definition 4. A discrete type random variable X is said to follow a Poisson distribution with parameter $\lambda>0$ (written as $X \sim P(\lambda)$) if its support is $E_{X}=\{0,1,2, \ldots\}$ and its probability mass function is given by

$$
f_{X}(x)=\left\{\begin{array}{l}
\frac{e^{-\lambda} \lambda^{x}}{x!}, \text { if } x \in\{0,1,2, \ldots\} \\
0, \text { otherwise }
\end{array}\right.
$$

Remark 5. From above discussion, it is clear that a Binomial distribution Bin (n, p) with large n and small p can be approximated by a Poisson distribution $P(\lambda)$, where $\lambda=n p$.

Now, the m.g.f. of $X \sim P(\lambda)$ is

$$
\begin{aligned}
M_{X}(t) & =E\left(e^{t X}\right) \\
& =\sum_{x \in E_{X}} e^{t x} f_{X}(x) \\
& =\sum_{x=0}^{\infty} e^{t x} \frac{e^{-\lambda} \lambda^{x}}{x!} \\
& =e^{-\lambda} \sum_{x=0}^{\infty} \frac{\left(\lambda e^{t}\right)^{x}}{x!} \\
& =e^{\lambda\left(e^{t}-1\right)}, t \in \mathbb{R}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& M_{X}^{(1)}(t)=\lambda e^{t} e^{\lambda\left(e^{t}-1\right)}, t \in \mathbb{R} ; \\
& M_{X}^{(2)}(t)=\lambda e^{t} e^{\lambda\left(e^{t}-1\right)}+\left(\lambda e^{t}\right)^{2} e^{\lambda\left(e^{t}-1\right)}, t \in \mathbb{R} ; \\
& E(X)=M_{X}^{(1)}(0)=\lambda ; \\
& E\left(X^{2}\right)=M_{X}^{(2)}(0)=\lambda+\lambda^{2} ; \\
& \text { and } \operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=\lambda .
\end{aligned}
$$

Example 6. Ninety-seven percent of electronic messages are transmitted with no error. What is the probability that out of 200 messages, at least 195 will be transmitted correctly?

Solution: Let us label the transmission of messages with no error as success and otherwise as failure. Let X be the number of correctly transmitted messages. Then $X \sim$ $\operatorname{Bin}(200,0.97)$. Hence the required probability is

$$
P(X \geq 195)=1-P(X \leq 194)=1-\sum_{x=0}^{194}\binom{200}{x}(0.97)^{x}(0.03)^{200-x}
$$

X cannot be approximated by the Poisson distribution because success probability is too large.

Let Y be the number of failures. Then $Y \sim \operatorname{Bin}(200,0.03)$. Then Y can be approximated by the Poisson distribution $Z \sim \mathrm{P}(6)$ (since $n p=200 \times 0.03=6$). Hence the required probability is

$$
P(X \geq 195)=P(Y \leq 5) \approx P(Z \leq 5)=\sum_{x=0}^{5} \frac{e^{-6} 6^{x}}{x!}
$$

