Moment generating function and Moment Inequalities
Let X be a random variable and let $A=\left\{t \in \mathbb{R} \mid E\left(e^{t X}\right)\right.$ is finite $\}$. The function $M_{X}: A \longrightarrow \mathbb{R}$, defined by

$$
M_{X}(t)=E\left(e^{t X}\right)
$$

is known as the moment generating function (m.g.f.) of the random variable X if $E\left(e^{t X}\right)$ is finite on an interval $(-a, a) \subseteq A$, for some $a>0$.

Theorem 1. Let X be a random variable with the moment generating function (m.g.f.) M_{X} that is finite on an interval $(-a, a)$, for some $a>0$. Then
(1) for each $r \in\{1,2, \cdots\}, M_{X}^{(r)}(t)$ exists on $(-a, a)$, and for each $r \in\{1,2, \cdots\}, \mu_{r}^{\prime}=$ $E\left(X^{r}\right)$ is finite and is equal to $\mu_{r}^{\prime}=E\left(X^{r}\right)=M_{X}^{(r)}(0)$, where $M_{X}^{(r)}(t)=\frac{d^{r} M_{X}(t)}{d t^{r}}$;
(2) $M_{X}(t)=\sum_{r=0}^{\infty} \frac{t^{r}}{r!} \mu_{r}^{\prime}, t \in(-a, a)$.

Example 2. Let X be a random variable with the p.m.f.

$$
f_{X}(k)=\left\{\begin{array}{l}
\frac{6}{\pi^{2} k^{2}}, \text { if } k \in\{1,2, \cdots\} \\
0, \text { otherwise. }
\end{array}\right.
$$

Then $\frac{1}{\pi^{2}} \sum_{k=1}^{\infty} \frac{e^{t k}}{k^{2}}$ is not convergent for every $t>0$. Thus the moment generating function (m.g.f.) of the random variable X does not exist.
Example 3. Let X be a random variable with p.d.f.

$$
f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{2} e^{-x / 2}, \text { if } x>0 \\
0, \text { otherwise } .
\end{array}\right.
$$

Now, the moment generating function (m.g.f.) of the random variable X

$$
M_{X}(t)=E\left(e^{t X}\right)=\frac{1}{2} \int_{0}^{\infty} e^{(t-1 / 2) x} d x=\frac{1}{1-2 t}, t<\frac{1}{2} .
$$

Also $M_{X}^{(1)}(t)=\frac{2}{(1-2 t)^{2}}$ and $M_{X}^{(2)}(t)=\frac{8}{(1-2 t)^{3}}, t<\frac{1}{2}$. It follows that

$$
E(X)=2, E\left(X^{2}\right)=8, \text { and } \operatorname{Var}(X)=4
$$

Theorem 4. (Markov's Inequality) If X is random variable that takes only non-negative values, then for any $a>0$,

$$
P(\{X \geq a\}) \leq \frac{E(X)}{a} .
$$

General form of Markov Inequality: Suppose that $E\left(|X|^{r}\right)<\infty$, for some $r>0$. Then, for any $a>0$,

$$
P(\{|X| \geq a\}) \leq \frac{E\left(|X|^{r}\right)}{a^{r}}
$$

Corollary 5. (Chebyshev Inequality) Suppose that random variable has finite first two moments. If $\mu=E(X)$ and $\sigma^{2}=\operatorname{Var}(X)$. Then, for any $a>0$,

$$
P(\{|X-\mu| \geq a\}) \leq \frac{\sigma^{2}}{a^{2}}
$$

Example 6. Let X be a random variable with the p.m.f.

$$
f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{8}, \text { if } x \in\{-1,1\} \\
\frac{1}{4}, \text { if } x=0 \\
0, \text { otherwise. }
\end{array}\right.
$$

Then $E(X)=\sum_{x \in S_{X}} x f_{X}(x)=0$ and $E\left(X^{2}\right)=\sum_{x \in S_{X}} x^{2} f_{X}(x)=\frac{1}{4}$. Therefore, using the Markov Inequality, we have

$$
P(\{|X| \geq 1\}) \leq \frac{E\left(X^{2}\right)}{1}=\frac{1}{4}
$$

The exact probability is

$$
P(\{|X| \geq 1\})=P(\{X \in\{-1,1\}\})=\frac{1}{4}
$$

Definition 7. A random variable X is said to have a symmetric distribution about a point $\mu \in \mathbb{R}$ if $P(\{X \leq \mu+x\})=P(\{X \geq \mu-x\}), \forall x \in \mathbb{R}$, i.e., $F_{X}(\mu-x)+F_{X}(\mu+x)=1, \forall x \in \mathbb{R}$.
Remark 8. Let X be a random variable having p.d.f./p.m.f. f_{X} and $\mu \in \mathbb{R}$. Then the distribution of X is symmetric about μ if and only if $f_{X}(\mu-x)=f_{X}(\mu+x), \forall x \in \mathbb{R}$.

