Testing Statistical Hypotheses

Hypothesis: A statistical hypothesis is an assertion about the probability distribution of population.

Null Hypothesis: It is a first tentative specification about the probability model. It is denoted by H_{0}. For example, $H_{0}: p=0.75, H_{0}: \mu_{1}=\mu_{2}$.

Alternative Hypothesis: Another possibility in contrast to the null hypothesis is called alternative hypothesis. It is denoted by H_{1} or H_{a}. For example, $H_{1}: p>0.75, H_{1}: \mu_{1} \neq \mu_{2}$.

Problem of Testing of Hypothesis: Let Θ be the parameter space, and Θ_{0} and Θ_{1} be its disjoint subsets (may not be complementary always).
Let the null and alternative hypotheses be defined as $H_{0}: \theta \in \Theta_{0}$ and $H_{1}: \theta \in \Theta_{1}$. Now, we will define a test of statistical hypotheses.

Test of Statistical Hypotheses: A test of statistical hypothesis is a procedure to decide whether to accept or reject the null hypothesis.
We take observations from the given population and based on this, we take the decision to accept or reject H_{0}.

For example, consider a die and let p be the probability of occurrence of a six. We want to test whether the die is fair, i.e., we want to test $H_{0}: p=\frac{1}{6}$ against $H_{1}: p \neq \frac{1}{6}$. To test this, let us toss the die, say $n=60$ times, and let X be the number of sixes out of 60 tosses. Based on the sample results, one may define a test such as, accept H_{0}, if $X=9,10,11$, reject otherwise.

Simple Hypothesis \& Composite Hypothesis: A hypothesis is called simple if it completely specifies a probability model otherwise it is called a composite hypothesis. For example $H_{0}: \mu=\mu_{0}$ is simple, whereas, $H_{0}^{*}: \mu>\mu_{0}$ is composite.

Type I Error: Rejecting H_{0}, when it is true is known as type I error. The probability of type I error is known as α.

Type II Error: Accepting H_{0}, when it is false is known as type II error. The probability of type II error is known as β.

Power of Test: $1-\beta$ is known as power of the test.
The consequences of both the errors are different. In an ideal test procedure both α and β should be minimum. However, simultaneous minimization of
both α and β is not possible. Therefore, we try to fix an upper bound on one error and then find a test procedure for which the second probability is minimum. A standard convention is to fix α and minimize β for that fixed α.

Example: Let X_{1}, \cdots, X_{n} be a random sample from $N(\mu, 1)$. We want to test $H_{0}: \mu=-1 / 2$ against $H_{1}: \mu=1 / 2$.
Here, the acceptance region is $A=(-\infty, 0]$, i.e., accept H_{0} if $\bar{X} \leq 0$. The rejection region is $R=(0, \infty)$, i.e., reject H_{0} if $\bar{X}>0$. Now, we calculate both the errors.

$$
\begin{aligned}
& \alpha=\operatorname{Prob}(\text { Type I error })=\operatorname{Prob}\left(\text { Rejecting } H_{0},\right. \text { when it is true) } \\
&=P_{\mu=\frac{-1}{2}}(\bar{X}>0)=P_{\mu=\frac{-1}{2}}\left(\sqrt{n}\left(\bar{X}+\frac{1}{2}\right)>\frac{\sqrt{n}}{2}\right)=P\left(Z>\frac{\sqrt{n}}{2}\right) \\
&=P(Z>2)=0.0228, \\
& \text { for } n=16 .
\end{aligned}
$$

Here, α and β are same.
Now let us modify the test procedure. Let the acceptance and rejection region be $A^{*}=\left\{\bar{X}<\frac{-1}{4}\right\}$ and $R^{*}=\left\{\bar{X} \geq \frac{-1}{4}\right\}$, respectively. Therefore, the probability of type I and type II errors are
$\alpha^{*}=P_{\mu=\frac{-1}{2}}\left(\bar{X} \geq \frac{-1}{4}\right)=P_{\mu=\frac{-1}{2}}\left(\sqrt{n}\left(\bar{X}+\frac{1}{2}\right)>\frac{\sqrt{n}}{4}\right)=P\left(Z \geq \frac{\sqrt{n}}{4}\right)=0.1587$,
for $n=16$.

$$
\beta^{*}=P_{\mu=\frac{1}{2}}\left(\bar{X}<\frac{-1}{4}\right)=P(Z<-3)=0.0013
$$

for $n=16$.
Here, we observe that $\beta^{*}<\beta$ but $\alpha^{*}>\alpha$. Hence, it is clear that the simultaneous minimization of both the errors α and β is not possible.

Interval Estimation

In the previous lectures, we have discussed the point estimation where we have a single value as an estimator for the unknown value of parameter. Now, we will discuss interval estimation where we have an interval as an estimator for the unknown parameter.
Let $\underline{X}=\left(X_{1}, \cdots, X_{n}\right)$ be a random sample from a population with distribution $P_{\underline{\theta}}, \underline{\theta} \in \Theta \subset \mathbb{R}^{k}$. A family of subsets $S(\underline{X})$ of Θ is said to be a family of confidence sets at confidence level $(1-\alpha)$ if

$$
P(\underline{\theta} \in S(\underline{X})) \geq 1-\alpha, \forall \theta \in \Theta .
$$

In case of $k=1, S(\underline{X})=(a(\underline{X}), b(\underline{X}))$ is said to be $(1-\alpha)$ level confidence interval for θ if

$$
P(a(\underline{X})<\theta<b(\underline{X})) \geq 1-\alpha, \forall \theta \in \Theta .
$$

Example 1: Let X_{1}, \cdots, X_{n} be a random sample from $N(\mu, 1)$. Let us construct a confidence interval for μ. We know, \bar{X} follows $N\left(\mu, \frac{1}{n}\right)$. We consider the confidence interval of the type ($\bar{X}-c_{1}, \bar{X}+c_{2}$), so that

$$
\begin{gathered}
P\left(\bar{X}-c_{1}<\mu<\bar{X}+c_{2}\right) \geq 1-\alpha \\
P\left(-c_{2}<\bar{X}-\mu<c_{1}\right) \geq 1-\alpha \\
P\left(-\sqrt{n} c_{2}\right)<\sqrt{n}(\bar{X}-\mu)<\sqrt{n} c_{1} \geq 1-\alpha \\
P\left(-\sqrt{n} c_{2}<Z<\sqrt{n} c_{1}\right) \geq 1-\alpha
\end{gathered}
$$

If we choose $c_{1}=c_{2}=c$, then $c \sqrt{n}=z_{\alpha / 2}$.
Therefore $c_{1}=c_{2}=\frac{1}{\sqrt{n}} z_{\alpha / 2}$.
Hence, $\left(\bar{X}-\frac{1}{\sqrt{n}} z_{\alpha / 2}, \bar{X}+\frac{1}{\sqrt{n}} z_{\alpha / 2}\right)$ is $(1-\alpha)$ level confidence interval for μ.

