
Point Estimation

Population: In Statistics, population is an aggregate of objects, animate or
inanimate, under study. The population may be finite or infinite.

Sample: A part or a finite subset of population is called a sample and the
number of units in the sample is called the sample size.

Parameter: The statistical constants of the population such as population
mean (µ), population variance (σ2) are referred as parameters.

Statistic: The statistical measures computed from the sample observations
alone for example, sample mean (x̄), sample variance (s2) are known as statis-
tics.

Here in the theory of point estimation, we consider that the population un-
der study is described by a probability density function (pdf) or probability
mass function (pmf), say, f(x|θ). The knowledge of parameter θ yields the
knowledge of entire population but the problem of statistical parametric in-
ference is that θ is unknown. In order to estimate this θ, we resort to take a
random sample form the population and infer about the unknown parameter
θ. It may also happen that instead of θ, our interest is to find an estimator
for a function of θ, say, g(θ).

Estimator: Any function of the random sample which is used to estimate
the unknown value of the given parametric function say g(θ) is called an
estimator. If X = X1, . . . , Xn is a random sample from a population with
the probability distribution Pθ, a function d(X) used for estimating g(θ) is
known as an estimator. Let x = x1, · · · , xn be a realization of X. Then, d(x)
is called an estimate.
For example, in estimating the average height of male students in a class, we
may use the sample mean X̄ as an estimator. Now, if a random sample of
size 20 has a sample mean 170cm, then 170cm is an estimate of the average
height of male students of that class.

Parameter Space: The set of all possible values of a parameter(s) is called
parameter space. It is denoted by Θ.
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Desirable Criteria for Estimators

Unbiasedness: Let X1, · · · , Xn be a random sample from a population with
probability distribution Pθ, θ ∈ Θ. An estimator T (X), X = X1, · · · , Xn is
said to be unbiased for estimating g(θ), if

Eθ(T (X)) = g(θ),∀θ ∈ Θ. (1)

If for some θ ∈ Θ, we have

Eθ(T (X)) = g(θ) + b(θ),

then, b(θ) is called bias of T . If b(θ) > 0,∀θ, then T is said to overestimate
g(θ). On the other hand if b(θ) < 0,∀θ, then T is an underestimator of g(θ).

Example 1: Let X1, · · · , Xn be a random sample from binomial distribution
with parameters n and p, where, n is known and 0 ≤ p ≤ 1. Find unbiased
estimators for a) p, the population proportion, b) p2 c) Variance of X.

Solution: a) Given that X follows binomial(n, p), n is known and p, the
population proportion is unknown. Let T (X) = X

n
, the sample proportion.

Now,

E(T (X)) = E
(
X

n

)
=
np

n
= p.

Thus, the sample proportion is an unbiased estimator of population propor-
tion.
b) We can compute that

E(X(X − 1)) = n(n− 1)p2 (2)

Hence, X(X−1)
n(n−1) is an unbiased estimator for p2.

c)Since, Var(X) = np(1− p) = n(p− p2).
Therefore, T (X) = n

(
X
n
− X(X−1)

n(n−1)

)
= X(n−X)

n−1 is an unbiased estimator of
Variance of X.

Remarks:
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1. The unbiased estimator need not be unique. For example, letX1, · · · , Xn

be a random sample form Poisson distribution with parameter λ, λ > 0.
Then, T1(X) = X̄, T2(X = Xi), T3(X) = X1+2X2

3
are some unbiased

estimators for λ.

2. If E(X) exists, then the sample mean is an unbiased estimator of the
population mean.

3. Let E(X2) exists, i.e. V ariance(X) = σ2 exists. Then, S2 = 1
n−1

∑n
i=1(Xi−

X̄)2 is unbiased for σ2.(Prove!)

4. Unbiased estimators may not always exist.For example, X follows bi-
nomial distribution with parameters n and p. Then, there exists no
unbiased estimator for pn+1.(Prove!)

5. Unbiased estimators may not be reasonable always. They may be ab-
surd. For example T (X) = (−2)X is an absurd unbiased estimator for
e−3λ, where, X follows Poisson distribution with parameter λ. (Why?)

Consistency: An estimator Tn = T (X1, · · · , Xn) is said to be consistent for
estimating g(θ) if for each ε > 0, P (|Tn−g(θ)| > ε)→ 0 as n→∞, ∀θ ∈ Θ.
Example 1: Let X1, · · · , Xn be a random sample from a population with
mean µ and variance σ2. Then,

P (|X̄ − µ| > ε) ≤ V ariance(X̄)

ε2
=

σ2

nε2
→ 0 as n→∞.

Hence, X̄ is consistent for µ.

Example 2: Let X1, · · · , Xn be a sequence of i.i.d. random variables with
mean µ, then by weak law of large numbers (WLLN), X̄ is consistent for µ.

Note: If population mean exists, sample mean is consistent for the pop-
ulation mean.

Theorem 1: If Tn is consistent for θ and h is a continuous function, then
h(Tn) is consistent for h(θ).

Theorem 2: If E(Tn) = θn → θ, V (Tn) = σ2
n → 0 as n → ∞, then Tn

is consistent for θ.
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Theorem 3: If Tn is consistent for θ and an → 1, bn → 0, then anTn + bn is
consistent for θ.

Note: The consistent estimator may not be unique. For example, if Tn
is consistent for θ, then, n

n+1
Tn, n+2

n+4
Tn are all consistent for θ.

Methods of Finding Estimators

There are various methods of finding estimators for the parameters, some of
which are listed below.

• Method of Moments

• Method of Least Squares

• Method of Minimum Chi square

• Method of Maximum Likelihood Estimation

We will discuss the method of moments and method of maximum likelihood
estimation in detail.

Method of Moments: Let X1, · · · , Xn be a random sample from a popu-
lation with probability distribution Pθ; θ ∈ Θ; θ = (θ1, · · · , θk).
Consider first k non central moments,

µ
′

1 = E(X1) = g1(θ)

µ
′

2 = E(X2
1 ) = g2(θ)

...

µ
′

k = E(Xk
1 ) = gk(θ).

Assume that the above system of equations have solution as

θ1 = h1(µ
′

1, · · · , µ
′

k)

θ2 = h2(µ
′

1, · · · , µ
′

k)

...
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θk = hk(µ
′

1, · · · , µ
′

k).

Now, define the first k non central sample moments as

α1 =
1

n

n∑
i=1

Xi

α2 =
1

n

n∑
i=1

X2
i .

...

αk =
1

n

n∑
i=1

Xk
i .

In the method of moments, we estimate kth population moment by kth sample
moment, i.e.,

µ̂j′ = αj ; j = 1, · · · , k.

Thus, the method of moments estimators of θ1, · · · , θk are defined as

θ̂1 = h1(α1, · · · , αk)

θ̂2 = h2(α1, · · · , αk)
...

θ̂k = hk(α1, · · · , αk).

Example 1: Let X1, · · · , Xn follow N(µ, σ2); µ and σ2 are unknown. Find
the method of moments estimators µ and σ2 .

Solution: We know, for normal distribution, µ
′
1 = µ and µ2

′ = µ2 + σ2.
Therefore, we have

µ = µ
′

1

and
σ2 = µ

′

2 − µ
′

1

2
.

Now, equating the population moments to sample moments, we get

µ̂MME = X̄,
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and

σ̂2
MME = α2 − α2

1 =
1

n

n∑
i=1

X2
i − X̄2 =

1

n

n∑
i=1

(
Xi − X̄

)2
.

Exercise 1: Let X1, · · · , Xk follow binomial distribution with parameters n
and p. Then, find the moment estimators of (i) p, when n in known and (ii)
n and p both, when n is unknown.
Exercise 2: Let X1, · · · , Xn be a random sample from Poisson distribution
with parameter λ, Find the moment estimator of λ.

Remarks:

1. The method moment estimators need not be unbiased always.

2. If the functions g′is are continuous and one-one then the functions h′is
are also continuous and then the method of moment estimators will be
consistent.

Method of Maximum Likelihood Estimation: Let X1, · · · , Xn be a ran-
dom sample from the probability distribution f(xi, θ). Let x = (x1, · · · , xn)
is a realization of the random sample, then, the likelihood function is given
by

L(θ, x) =
n∏
i=1

f(xi, θ).

The value of θ, say θ̂(x) such that

L(θ̂, x) ≥ L(θ, x) ∀ θ ∈ Θ,

is called the maximum likelihood estimator (MLE) of θ.

In practice, we may often consider maximization of log likelihood, i.e., logL(θ, x) =
l(θ, x) as log is an increasing function of θ. A useful approach often is appli-
cable is to find solutions of the likelihood equations ( ∂l

∂θ1
= 0, · · · , ∂l

∂θk
= 0).

Example: Let X1, · · · , Xn follow Poisson distribution with parameter λ;
λ > 0. Find the MLE for λ.
Solution: Let x = (x1, · · · , xn) be a realization of a random sample. Then
the likelihood function is given by

L(λ, x) =
n∏
i=1

f(xi, λ) =
n∏
i=1

e−λλxi

xi!
=
e−nλλ

∑n

i=1
xi∏n

i=1 xi!
.
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Therefore, the log likelihood function is given by

logL(λ, x) = l(λ) = −nλ+
n∑
i=1

xi log λ− log

(
n∏
i=1

xi!

)
.

The likelihood equation is

∂l

∂λ
= −n+

1

λ

n∑
i=1

xi = 0.

Now,
∑n

i=1
xi−nλ
λ

> 0 if λ < x̄ and
∑n

i=1
xi−nλ
λ

< 0 if λ > x̄

Hence, the MLE for λ is λ̂ = x̄.
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