Point Estimation

Population: In Statistics, population is an aggregate of objects, animate or
inanimate, under study. The population may be finite or infinite.

Sample: A part or a finite subset of population is called a sample and the
number of units in the sample is called the sample size.

Parameter: The statistical constants of the population such as population
mean (u), population variance (0?) are referred as parameters.

Statistic: The statistical measures computed from the sample observations
alone for example, sample mean (), sample variance (s?) are known as statis-
tics.

Here in the theory of point estimation, we consider that the population un-
der study is described by a probability density function (pdf) or probability
mass function (pmf), say, f(z]f). The knowledge of parameter € yields the
knowledge of entire population but the problem of statistical parametric in-
ference is that # is unknown. In order to estimate this 6, we resort to take a
random sample form the population and infer about the unknown parameter
6. It may also happen that instead of 8, our interest is to find an estimator
for a function of 6, say, g(@).

Estimator: Any function of the random sample which is used to estimate
the unknown value of the given parametric function say g(6) is called an
estimator. If X = X;,...,X, is a random sample from a population with
the probability distribution P, a function d(X) used for estimating ¢(0) is
known as an estimator. Let x = 1, -+, x, be a realization of X. Then, d(x)
is called an estimate.

For example, in estimating the average height of male students in a class, we
may use the sample mean X as an estimator. Now, if a random sample of
size 20 has a sample mean 170cm, then 170cm is an estimate of the average
height of male students of that class.

Parameter Space: The set of all possible values of a parameter(s) is called
parameter space. It is denoted by ©.



Desirable Criteria for Estimators

Unbiasedness: Let X1, ---, X, be a random sample from a population with
probability distribution Py, 0 € ©. An estimator T(X), X = Xj,---, X, is
said to be unbiased for estimating ¢(#), if

Ey(T(X)) = g(0),V8 € O©. (1)
If for some 6 € ©, we have
Ep(T(X)) = g(0) +b(0),

then, b(0) is called bias of T'. If b(f) > 0,V6, then T is said to overestimate
g(0). On the other hand if b(f) < 0,V6, then T is an underestimator of g(0).

Example 1: Let X4, ---, X,, be a random sample from binomial distribution
with parameters n and p, where, n is known and 0 < p < 1. Find unbiased
estimators for a) p, the population proportion, b) p? ¢) Variance of X.

Solution: a) Given that X follows binomial(n,p), n is known and p, the
population proportion is unknown. Let T'(X) = %, the sample proportion.
Now,

Bra)=5(>)="=p

Thus, the sample proportion is an unbiased estimator of population propor-
tion.
b) We can compute that

E(X(X —1)) =n(n—1)p* (2)

Hence, X(X__l) is an unbiased estimator for p?.
n(n—1)

¢)Since, Var(X) = np(1 — p) = n(p — p?).
Therefore, T'(X) = n (% - igf_}?) = X(:__IX) is an unbiased estimator of
Variance of X.

Remarks:



1. The unbiased estimator need not be unique. For example, let Xy, --, X,
be a random sample form Poisson distribution with parameter A\, A > 0.
Then, T1(X) = X, To(X = X;), T3(X) = 242X are some unbiased
estimators for .

2. If E(X) exists, then the sample mean is an unbiased estimator of the
population mean.

3. Let E(X?) exists, i.e. Variance(X) = o2 exists. Then, 5% = 1= 37" (X;—

i n—1
X)? is unbiased for o2.(Prove!)

4. Unbiased estimators may not always exist.For example, X follows bi-
nomial distribution with parameters n and p. Then, there exists no
unbiased estimator for p"*!.(Prove!)

5. Unbiased estimators may not be reasonable always. They may be ab-
surd. For example T(X) = (—2)% is an absurd unbiased estimator for
e 3 where, X follows Poisson distribution with parameter A\. (Why?)

Consistency: An estimator 7,, = T'(Xy,---, X,,) is said to be consistent for
estimating g(0) if for each € > 0, P(|7,, —g(0)| > €) - 0asn — oo, Vl € O.
Example 1: Let Xy, - -, X, be a random sample from a population with
mean 4 and variance 2. Then,

< Variance(X) — o?

P(|X — | > ¢ =——0 as n— oo.

(1%~ > ) < HAR) 7

Hence, X is consistent for .

Example 2: Let Xi,---, X, be a sequence of i.i.d. random variables with

mean 1, then by weak law of large numbers (WLLN), X is consistent for .

Note: If population mean exists, sample mean is consistent for the pop-
ulation mean.

Theorem 1: If T, is consistent for # and A is a continuous function, then
h(T,) is consistent for h(6).

Theorem 2: If E(T,,) = 0, — 0, V(T,,) = 02 — 0 as n — oo, then T,
is consistent for 6.



Theorem 3: If T}, is consistent for ¢ and a,, — 1, b, — 0, then a,T,, + b, is
consistent for 6.

Note: The consistent estimator may not be unique. For example, if T,
is consistent for 0, then, 75T, Z—ﬁTn are all consistent for 6.

Methods of Finding Estimators

There are various methods of finding estimators for the parameters, some of
which are listed below.

e Method of Moments

e Method of Least Squares

e Method of Minimum Chi square

e Method of Maximum Likelihood Estimation

We will discuss the method of moments and method of maximum likelihood
estimation in detail.

Method of Moments: Let X, .-, X, be a random sample from a popu-
lation with probability distribution Pp;0 € ©;60 = (64, -, 6y).
Consider first £ non central moments,

p = E(X1) = g1(0)

1y = E(X7) = 9(6)

. = E(XY) = gi(8).

Assume that the above system of equations have solution as
01 = hi(py, s p1y,)

02 = oy, piy,)



O = ha(uys - 1)

Now, define the first k£ non central sample moments as

1 n
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In the method of moments, we estimate k* population moment by k** sample
moment, i.e.,

~

iy =a;; j=1,--k

Thus, the method of moments estimators of 0, - - -, 0, are defined as

él = hl(ala o 'aak)

92 = h?(ala o 'aak)

ék = hk(Oéh T 70%)-

Example 1: Let X;,---, X, follow N(u,0?); u and 02 are unknown. Find
the method of moments estimators p and o2 .

Solution: We know, for normal distribution, p; = g and p’ = p? + o2
Therefore, we have
=ty
and
2 ’ ’r2
0 = Ho— Hy -
Now, equating the population moments to sample moments, we get

ﬂMME :Xa



and

. 1 & - 1 & 1\ 2
Grump=o02—0f ==Y X} - X*=-3"(X; - X)".
na3 N4
Exercise 1: Let X7, -, X} follow binomial distribution with parameters n

and p. Then, find the moment estimators of (i) p, when n in known and (ii)
n and p both, when n is unknown.

Exercise 2: Let Xy,---,X,, be a random sample from Poisson distribution
with parameter A, Find the moment estimator of A.

Remarks:

1. The method moment estimators need not be unbiased always.

2. If the functions g¢}s are continuous and one-one then the functions h's
are also continuous and then the method of moment estimators will be
consistent.

Method of Maximum Likelihood Estimation: Let X, -, X, be aran-
dom sample from the probability distribution f(x;,0). Let z = (z1,---, z,)
is a realization of the random sample, then, the likelihood function is given
by

n

L(Qvl) = H f(xzag)

i=1
The value of 6, say 6(z) such that

L(0.z) > L(0.z) V€0,
is called the maximum likelihood estimator (MLE) of 6.

In practice, we may often consider maximization of log likelihood, i.e., log L(0, z) =
(8, z) as log is an increasing function of §. A useful approach often is appli-
ol ol

cable is to find solutions of the likelihood equations (8—91 =0,---, %, = 0).

Example: Let Xi,---, X, follow Poisson distribution with parameter \;
A > 0. Find the MLE for \.

Solution: Let x = (xy,---,x,) be a realization of a random sample. Then
the likelihood function is given by

67)\)\:1:1' efn)\)\zzl:l x;

- n



Therefore, the log likelihood function is given by

log L(\,z) =1(A\) = —nA+ Z x;log A — log (H :Eﬂ) )
i1

i=1

The likelihood equation is

ol 1 &
aN ¥ ZZO
25 n+)\;x

Now, 2= 5 (i A < 7 and 2= < 0 if A > 7

Hence, the MLE for A is A =17.



