Moments, Covariance and Correlation Coefficient

Let $\underline{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a n-dimensional $(n \geq 2)$ random vector and $\psi: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a function such that $\psi^{-1}(A) \in \mathbb{B}_{\mathbb{R}^{n}}$, for all $A \in \mathbb{B}_{\mathbb{R}}$. Suppose $E(\psi(\underline{X}))$ is finite.
(1) If \underline{X} is of discrete type with joint p.m.f. $f_{\underline{X}}$ and support $E_{\underline{X}}$, then

$$
\left.E(\psi(\underline{X}))=\sum_{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in E_{\underline{X}}} \psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) f_{\underline{X}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) .
$$

(2) If \underline{X} is of continuous type with joint p.d.f. $f_{\underline{X}}$, then

$$
E(\psi(\underline{X}))=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \psi\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{\underline{X}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1} d x_{2} \cdots d x_{n}
$$

(3) For nonnegative integers $k_{1}, k_{2}, \ldots, k_{n}$, let $\psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}$. Then

$$
\mu_{k_{1}, k_{2}, \ldots, k_{n}}^{\prime}=E(\psi(\underline{X}))=E\left(X_{1}^{k_{1}} X_{2}^{k_{2}} \cdots X_{n}^{k_{n}}\right)
$$

provided it is finite, is called the joint moment of order $k_{1}+k_{2}+\cdots+k_{n}$ of $\underline{X}=$ $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
(4) For $n=2$, let $\psi\left(x_{1}, x_{2}\right)=\left(x_{1}-E\left(X_{1}\right)\right)\left(x_{2}-E\left(X_{2}\right)\right)$. Then

$$
\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left(\left(X_{1}-E\left(X_{1}\right)\right)\left(X_{2}-E\left(X_{2}\right)\right)\right)
$$

provided it is finite, is called the covariance between X_{1} and X_{2}.
Note: By the definition of covariance, it is easy to see

$$
\begin{aligned}
& \operatorname{Cov}\left(X_{1}, X_{1}\right)=\operatorname{Var}\left(X_{1}\right) ; \\
& \operatorname{Cov}\left(X_{1}, X_{2}\right)=\operatorname{Cov}\left(X_{2}, X_{1}\right) ; \\
& \operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left(X_{1} X_{2}\right)-E\left(X_{1}\right) E\left(X_{2}\right) .
\end{aligned}
$$

Theorem 1. Let $\underline{X}=\left(X_{1}, X_{2}\right)$ and $\underline{Y}=\left(Y_{1}, Y_{2}\right)$ be two random vectors and $a_{1}, a_{2}, b_{1}, b_{2}$ be real constants. Then, provided the involved expectations are finite,
(1) $E\left(a_{1} X_{1}+a_{2} X_{2}\right)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)$;
(2) $\operatorname{Cov}\left(a_{1} X_{1}+a_{2} X_{2}, b_{1} Y_{1}+b_{2} Y_{2}\right)=a_{1} b_{1} \operatorname{Cov}\left(X_{1}, Y_{1}\right)+a_{1} b_{2} \operatorname{Cov}\left(X_{1}, Y_{2}\right)+a_{2} b_{1} \operatorname{Cov}\left(X_{2}, Y_{1}\right)+$ $a_{2} b_{2} \operatorname{Cov}\left(X_{2}, Y_{2}\right)=\sum_{i=1}^{2} \sum_{j=1}^{2} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)$.
In particular,
$\operatorname{Var}\left(a_{1} X_{1}+a_{2} X_{2}\right)=\operatorname{Cov}\left(a_{1} X_{1}+a_{2} X_{2}, a_{1} X_{1}+a_{2} X_{2}\right)=a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)+$ $2 a_{1} a_{2} \operatorname{Cov}\left(X_{1}, X_{2}\right)$.

Definition 2. (1) The correlation coefficient between random variables X and Y is defined by

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}},
$$

provided $0<\operatorname{Var}(X), \operatorname{Var}(Y)<\infty$.
(2) The random variables X and Y are said to be uncorrelated if $\operatorname{Cov}(X, Y)=0$.

Note: By definition, it is clear that if X and Y are independent random variables, then they are uncorrelated but converse need not be true.

Theorem 3. Let X and Y be two random variables. Then, provided the involved expectations are finite,
(1) $(E(X Y))^{2} \leq E\left(X^{2}\right) E\left(Y^{2}\right)$. Moreover, $(E(X Y))^{2}=E\left(X^{2}\right) E\left(Y^{2}\right)$ if and only if $P(Y=$ $c X)=1$ or $P(X=c Y)=1$, for some $c \in \mathbb{R}$.

This inequality is know as Cauchy-Schwarz inequality for random variables.
(2) $|\rho(X, Y)| \leq 1$. To prove it, apply (1) on random variables $X^{\prime}=X-E(X)$ and $Y^{\prime}=$ $Y-E(Y)$.

Example 4. Let $\underline{Z}=(X, Y)$ be a random vector of discrete type with joint p.m.f.

$$
f(x, y)= \begin{cases}p_{1}, & \text { if }(x, y)=(-1,1) \\ p_{2}, & \text { if }(x, y)=(0,0) \\ p_{1}, & \text { if }(x, y)=(1,1) \\ 0, & \text { otherwise }\end{cases}
$$

where $p_{1}, p_{2} \in(0,1)$ and $2 p_{1}+p_{2}=1$.
Then the support of \underline{Z}, X and Y are

$$
\begin{aligned}
& E_{\underline{Z}}=\{(-1,1),(0,0),(1,1)\} \\
& E_{X}=\{-1,0,1\} \\
& d \\
& E_{Y}=\{0,1\},
\end{aligned}
$$

and
respectively. Clearly $E_{\underline{Z}} \neq E_{X} \times E_{Y}$. So, X and Y are not independent.
Now,

$$
\begin{aligned}
& E(X Y)=\sum_{(x, y) \in E_{\underline{Z}}} x y f(x, y)=0 \\
& E(X)=\sum_{(x, y) \in E_{\underline{Z}}} x f(x, y)=0 \\
& E(Y)=\sum_{(x, y) \in E_{\underline{Z}}} y f(x, y)=2 p_{1} ; \\
& \Rightarrow \operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=0 \Rightarrow \rho(X, Y)=0
\end{aligned}
$$

This shows that X and Y are uncorrelated but not independent.
We can also show that X and Y are not independent by another way.
The marginal p.m.f. of X is

$$
\begin{aligned}
f_{X}(x) & =\left\{\begin{array}{l}
\sum_{y \in R_{x}} f(x, y), \text { if } x \in\{-1,0,1\} \\
0, \text { otherwise }
\end{array}\right. \\
& = \begin{cases}p_{1}, & \text { if } x=-1 \\
p_{2}, & \text { if } x=0 \\
p_{1}, \text { if } x=1 \\
0, \text { otherwise }\end{cases}
\end{aligned}
$$

Similarly, the marginal p.m.f. of Y is

$$
\begin{aligned}
f_{Y}(y) & =\left\{\begin{array}{l}
\sum_{x \in R_{y}} f(x, y), \text { if } y \in\{0,1\} \\
0, \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{l}
p_{2}, \text { if } x=0 \\
2 p_{1}, \text { if } x=1 \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Since $f(-1,1) \neq f_{X}(-1) f_{Y}(1), X$ and Y are not independent.
Example 5. Let $\underline{Z}=(X, Y)$ be a random vector of continuous type with joint p.d.f.

$$
f(x, y)=\left\{\begin{array}{l}
1, \text { if } 0<|y| \leq x<1 \\
0, \text { otherwise }
\end{array}\right.
$$

Now,

$$
\begin{aligned}
& E(X Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y=\int_{0}^{1} \int_{-x}^{x} x y d y d x=0 \\
& E(X)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) d x d y=\int_{0}^{1} \int_{-x}^{x} x d y d x=\frac{2}{3} \\
& E(Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) d x d y=\int_{0}^{1} \int_{-x}^{x} y d y d x=0 \\
& \Rightarrow \operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=0 \Rightarrow \rho(X, Y)=0
\end{aligned}
$$

Thus X and Y are uncorrelated.
The marginal p.d.f. of X is

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\left\{\begin{array}{l}
\int_{-x}^{x} d y, \text { if } 0<x<1 \\
0, \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{l}
2 x, \text { if } 0<x<1 \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Similarly, the marginal p.d.f. of Y is

$$
\begin{aligned}
f_{Y}(y) & =\int_{-\infty}^{\infty} f(x, y) d x \\
& =\left\{\begin{array}{l}
\int_{|y|}^{1} d x, \text { if }-1<y<1 \\
0, \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{l}
1-|y|, \text { if }-1<y<1 \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Since $f(x, y) \neq f_{X}(x) f_{Y}(y), X$ and Y are not independent.
We can also show that X and Y are not independent by another way. Then the support of \underline{Z}, X and Y are

$$
\begin{aligned}
& E_{\underline{Z}}=\left\{(x, y) \in \mathbb{R}^{2}|0<|y| \leq x<1\}\right. \\
& E_{X}=(0,1) \\
& \text { and } \\
& E_{Y}=(-1,1),
\end{aligned}
$$

respectively. Clearly $E_{\underline{Z}} \neq E_{X} \times E_{Y}$. So, X and Y are not independent.
This example also shows that X and Y are uncorrelated but not independent.

