
Moments, Covariance and Correlation Coefficient

Let X = (X1, X2, . . . , Xn) be a n−dimensional (n ≥ 2) random vector and ψ : Rn −→ R be a
function such that ψ−1(A) ∈ BRn , for all A ∈ BR. Suppose E(ψ(X)) is finite.

(1) If X is of discrete type with joint p.m.f. fX and support EX , then

E(ψ(X)) =
∑

(x1,x2,...,xn)∈EX

ψ(x1, x2, . . . , xn))fX(x1, x2, . . . , xn).

(2) If X is of continuous type with joint p.d.f. fX , then

E(ψ(X)) =

∞∫
−∞

· · ·
∞∫
−∞

ψ(x1, x2, . . . , xn)fX(x1, x2, . . . , xn) dx1 dx2 · · · dxn.

(3) For nonnegative integers k1, k2, . . . , kn, let ψ(x1, x2, . . . , xn) = xk11 x
k2
2 · · ·xknn . Then

µ′k1,k2,...,kn = E(ψ(X)) = E(Xk1
1 Xk2

2 · · ·X
kn
n ),

provided it is finite, is called the joint moment of order k1 + k2 + · · · + kn of X =
(X1, X2, . . . , Xn).

(4) For n = 2, let ψ(x1, x2) = (x1 − E(X1))(x2 − E(X2)). Then

Cov(X1, X2) = E

(
(X1 − E(X1))(X2 − E(X2))

)
,

provided it is finite, is called the covariance between X1 and X2.

Note: By the definition of covariance, it is easy to see

Cov(X1, X1) = V ar(X1);

Cov(X1, X2) = Cov(X2, X1);

Cov(X1, X2) = E(X1X2)− E(X1)E(X2).

Theorem 1. Let X = (X1, X2) and Y = (Y1, Y2) be two random vectors and a1, a2, b1, b2 be real
constants. Then, provided the involved expectations are finite,

(1) E(a1X1 + a2X2) = a1E(X1) + a2E(X2);
(2) Cov(a1X1+a2X2, b1Y1+b2Y2) = a1b1 Cov(X1, Y1)+a1b2 Cov(X1, Y2)+a2b1 Cov(X2, Y1)+

a2b2 Cov(X2, Y2) =
2∑

i=1

2∑
j=1

aibjCov(Xi, Yj).

In particular,
V ar(a1X1 + a2X2) = Cov(a1X1 + a2X2, a1X1 + a2X2) = a21V ar(X1) + a22V ar(X2) +
2a1a2Cov(X1, X2).

Definition 2. (1) The correlation coefficient between random variables X and Y is defined
by

ρ(X,Y ) =
Cov(X,Y )√
V ar(X)V ar(Y )

,

provided 0 < V ar(X), V ar(Y ) <∞.
(2) The random variables X and Y are said to be uncorrelated if Cov(X,Y ) = 0.

Note: By definition, it is clear that if X and Y are independent random variables, then they
are uncorrelated but converse need not be true.

Theorem 3. Let X and Y be two random variables. Then, provided the involved expectations
are finite,

(1) (E(XY ))2 ≤ E(X2)E(Y 2). Moreover, (E(XY ))2 = E(X2)E(Y 2) if and only if P (Y =
cX) = 1 or P (X = cY ) = 1, for some c ∈ R.

This inequality is know as Cauchy-Schwarz inequality for random variables.
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(2) |ρ(X,Y )| ≤ 1. To prove it, apply (1) on random variables X ′ = X − E(X) and Y ′ =
Y − E(Y ).

Example 4. Let Z = (X,Y ) be a random vector of discrete type with joint p.m.f.

f(x, y) =


p1, if (x, y) = (−1, 1)

p2, if (x, y) = (0, 0)

p1, if (x, y) = (1, 1)

0, otherwise

where p1, p2 ∈ (0, 1) and 2p1 + p2 = 1.

Then the support of Z,X and Y are

EZ = {(−1, 1), (0, 0), (1, 1)}
EX = {−1, 0, 1}

and

EY = {0, 1},
respectively. Clearly EZ 6= EX × EY . So, X and Y are not independent.

Now,

E(XY ) =
∑

(x,y)∈EZ

xyf(x, y) = 0;

E(X) =
∑

(x,y)∈EZ

xf(x, y) = 0;

E(Y ) =
∑

(x,y)∈EZ

yf(x, y) = 2p1;

⇒ Cov(X,Y ) = E(XY )− E(X)E(Y ) = 0⇒ ρ(X,Y ) = 0

This shows that X and Y are uncorrelated but not independent.

We can also show that X and Y are not independent by another way.

The marginal p.m.f. of X is

fX(x) =


∑

y∈Rx

f(x, y), if x ∈ {−1, 0, 1}

0, otherwise

=


p1, if x = −1

p2, if x = 0

p1, if x = 1

0, otherwise

Similarly, the marginal p.m.f. of Y is

fY (y) =


∑

x∈Ry

f(x, y), if y ∈ {0, 1}

0, otherwise

=


p2, if x = 0

2p1, if x = 1

0, otherwise

Since f(−1, 1) 6= fX(−1)fY (1), X and Y are not independent.

Example 5. Let Z = (X,Y ) be a random vector of continuous type with joint p.d.f.

f(x, y) =

{
1, if 0 < |y| ≤ x < 1

0, otherwise
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Now,

E(XY ) =

∞∫
−∞

∞∫
−∞

xyf(x, y) dx dy =

1∫
0

x∫
−x

xy dy dx = 0;

E(X) =

∞∫
−∞

∞∫
−∞

xf(x, y) dx dy =

1∫
0

x∫
−x

x dy dx =
2

3
;

E(Y ) =

∞∫
−∞

∞∫
−∞

yf(x, y) dx dy =

1∫
0

x∫
−x

y dy dx = 0;

⇒ Cov(X,Y ) = E(XY )− E(X)E(Y ) = 0⇒ ρ(X,Y ) = 0

Thus X and Y are uncorrelated.

The marginal p.d.f. of X is

fX(x) =

∞∫
−∞

f(x, y) dy

=


x∫
−x

dy, if 0 < x < 1

0, otherwise

=

{
2x, if 0 < x < 1

0, otherwise

Similarly, the marginal p.d.f. of Y is

fY (y) =

∞∫
−∞

f(x, y) dx

=


1∫
|y|
dx, if − 1 < y < 1

0, otherwise

=

{
1− |y|, if − 1 < y < 1

0, otherwise

Since f(x, y) 6= fX(x)fY (y), X and Y are not independent.

We can also show that X and Y are not independent by another way. Then the support of
Z,X and Y are

EZ = {(x, y) ∈ R2 | 0 < |y| ≤ x < 1}
EX = (0, 1)

and

EY = (−1, 1),

respectively. Clearly EZ 6= EX × EY . So, X and Y are not independent.

This example also shows that X and Y are uncorrelated but not independent.
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