Moments, Covariance and Correlation Coefficient

Let X = (X1, Xo,...,X,) be a n—dimensional (n > 2) random vector and ¢ : R® — R be a
function such that 1/ ~1(A) € Bgn, for all A € Bg. Suppose E(1(X)) is finite.

(1) If X is of discrete type with joint p.m.f. fx and support Ex, then
EWX) = > @,z w0)) fx (@1, w0).
(a:1,:02,...,xn)€E&

(2) If X is of continuous type with joint p.d.f. fx, then

:/.../¢(x1,x27...,ﬂj‘n)fx(l‘l,xg,...,xn)dl‘ldxg"'dl‘n.

(3) For nonnegative integers ki, ko, ..., kn, let ¥(z1,xo, ..., x,) = x’flx? -o-gkn Then

k k n
IU’;Cl,k?Q,...ykn = E(lﬁ(&)) = E(‘Xll‘XZ2 e Xrlj )7

provided it is finite, is called the joint moment of order ky + ko + --- + k, of X =
(X1, Xo,..., Xp).
(4) For n =2, let ¥(x1,22) = (x1 — E(X1))(x2 — E(X2)). Then

COU(Xl, X2) = E<(X1 — E(Xl))(XQ — E(XQ))) s
provided it is finite, is called the covariance between X; and Xo.

Note: By the definition of covariance, it is easy to see
Cov(X1,X1) = Var(Xy);
Cov(X1, X2) = Cov(Xa, X1);
Cov(X1,X2) = E(X1X2) — E(X1)E(X2).

Theorem 1. Let X = (X1, X5) and Y = (Y1,Y2) be two random vectors and a1, az,by,be be real
constants. Then, provided the involved expectations are finite,

(1) E(a1X1 + (IQXQ) = alE(Xl) + agE(XQ),'
(2) COU(a1X1+6L2X2, b1Y1+b2Y2) = a1 COU(Xl, }/1)—1—(11132 Cov(Xl,Y2)+a2b1 CO’U(XQ, Yi)"—

azby Cov(Xs,Ys) = Z Z a;bjCov(X;,Yj).
1=1j5=
In particular,
Var(a1 Xy + a2 Xs) = Cov(a1 X1 + a2 Xe,a1 X1 + asX3) = a?Var(Xy) + a3Var(Xs) +
2a1a2C0v(X1, X3).

Definition 2. (1) The correlation coefficient between random variables X and Y is defined

by
Cov(X,Y)

VVar(X)Var(Y)’

p(X,Y) =

provided 0 < Var(X),Var(Y) < oco.
(2) The random variables X andY are said to be uncorrelated if Cov(X,Y) = 0.

Note: By definition, it is clear that if X and Y are independent random variables, then they
are uncorrelated but converse need not be true.

Theorem 3. Let X and Y be two random variables. Then, provided the involved expectations
are finite,

(1) (B(XY))? < E(X*)E(Y?). Moreover, (E(XY))? = E(X?)E(Y?) if and only if P(Y =
cX)=1or P(X =cY) =1, for some c € R.
This inequality is know as Cauchy-Schwarz inequality for random variables.
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(2) |p(X,Y)| < 1. To prove it, apply (1) on random variables X' = X — E(X) and Y' =
Y — E(Y).

Example 4. Let Z = (X,Y) be a random vector of discrete type with joint p.m.f.
b1, Zf (xvy) = (_17 1)
b2, Zf (l‘,y) = (050)

p1, if (z,y) = (1,1)
0, otherwise

flz,y) =

where p1,p2 € (0,1) and 2p1 + pa = 1.

Then the support of Z, X and Y are

EZ = {(_17 1)7 (070)7 (L 1>}
Ex = {—1,0,1}

and
EY — {07 1})
respectively. Clearly Ez # Ex x Ey. So, X and Y are not independent.
Now,
E(XY)= > ayf(sy) =0
(zy)eEz
E(X)= > af(z,y)=0;
(zy)eEbz
E(Y)= Y yf(z.y)=2p;
(zy)€EZ

= Cov(X,Y) = E(XY) - E(X)E(Y)=0= p(X,Y) =0

This shows that X and Y are uncorrelated but not independent.
We can also show that X and Y are not independent by another way.

The marginal p.m.f. of X is
Z f(:l:ay)v fo € {_13031}

fx(x) = qveh
0, otherwise

P1, Zfﬂ?:—l
)2, ifx=0
p1, ife=1

0, otherwise
Similarly, the marginal p.m.f. of Y is
> flx,y), ify €{0,1}

fy(y) = ZERy
0, otherwise

po, if =0
=4q2p1, ifr=1

0, otherwise
Since f(—1,1) # fx(—=1)fy (1), X and Y are not independent.
Example 5. Let Z = (X,Y) be a random vector of continuous type with joint p.d.f.

o) Lifo<|y <z <1
$7 = .
Y 0, otherwise
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Now,

E(XY) = 7 /Oozcyf(a:,y)da;dy:/ljmydydaij;

—00 —00 0 —x
B(X) = 70 7mf(x,y)dxdy:jjxdydx: g;
—00 —00 0 —x
E(Y)= 7 7yf(w,y)dwdy=j]ydydw=0;

—00 —0O0

0
= Cov(X,Y) = E(XY) - E(X)E(Y)=0= p(X,Y) =

Thus X and Y are uncorrelated.

The marginal p.d.f. of X is

nmzjfmw@

xT

[ dy, ifo<z<1

—T

0, otherwise

2z, if0<z <1
B 0, otherwise
Stmilarly, the marginal p.d.f. of Y is

ﬁ@—/fmmm
1

[dz, if —1<y<1
ly|
0, otherwise

_{1—y|, if —l<y<l1

0, otherwise

Since f(z,y) # fx(x)fy(y), X andY are not independent.

We can also show that X and Y are not independent by another way
Z,X andY are

Ey = (-1,1),
respectively. Clearly Ez # Ex x Ey. So, X andY are not independent.

. The

This example also shows that X and Y are uncorrelated but not independent.

n the support of



