Uniform and Normal Distribution

1. Uniform or Rectangular Distribution

Let α and β be two real numbers such that $-\infty<\alpha<\beta<\infty$. A continuous random variable X is said to have a uniform (or rectangular) distribution over the interval (α, β) (written as $X \sim U(\alpha, \beta)$) if probability density function of X is given by

$$
f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{\beta-\alpha}, \text { if } \alpha<x<\beta \\
0, \text { otherwise }
\end{array}\right.
$$

Now, the r-th moment of $X \sim U(\alpha, \beta)$ is

$$
\begin{aligned}
E\left(X^{r}\right) & =\int_{-\infty}^{\infty} x^{r} f_{X}(x) d x \\
& =\int_{\alpha}^{\beta} \frac{x^{r}}{\beta-\alpha} d x \\
& =\frac{\beta^{r+1}-\alpha^{r+1}}{(r+1)(\beta-\alpha)} \\
& =\frac{\beta^{r}+\beta^{r-1} \alpha+\cdots+\beta \alpha^{r-1}+\alpha^{r}}{r+1}
\end{aligned}
$$

Hence

$$
\begin{aligned}
E(X) & =\frac{\alpha+\beta}{2} \\
E\left(X^{2}\right) & =\frac{\beta^{2}+\beta \alpha+\alpha^{2}}{3} \\
\operatorname{Var}(X) & =E\left(X^{2}\right)-(E(X))^{2}=\frac{(\beta-\alpha)^{2}}{12} .
\end{aligned}
$$

The m.g.f. of $X \sim U(\alpha, \beta)$ is

$$
\begin{aligned}
M_{X}(t) & =E\left(e^{t X}\right) \\
& =\int_{-\infty}^{\infty} e^{t x} f_{X}(x) d x \\
& =\int_{\alpha}^{\beta} \frac{e^{t x}}{\beta-\alpha} d x \\
& =\left\{\begin{array}{l}
e^{t \beta-}-e^{t \alpha} \\
(\beta-\alpha) t \\
1, \text { if } t=0
\end{array}\right.
\end{aligned}
$$

The d.f. of $X \sim U(\alpha, \beta)$ is

$$
\begin{aligned}
F_{X}(x) & =\int_{-\infty}^{x} f_{X}(t) d t \\
& =\left\{\begin{array}{l}
0, \text { if } x<\alpha \\
\frac{x-\alpha}{\beta-\alpha}, \text { if } \alpha \leq x<\beta \\
1, \text { if } x \geq \beta
\end{array}\right.
\end{aligned}
$$

Remark 1. Let $X \sim U(\alpha, \beta)$ and $Y=\frac{X-\alpha}{\beta-\alpha}$. Then the d.f. of Y is

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =P(X \leq \alpha+(\beta-\alpha) y) \\
& = \begin{cases}0, & \text { if } \alpha+(\beta-\alpha) y<\alpha \\
\frac{\alpha+(\beta-\alpha) y-\alpha}{\beta-\alpha}, & \text { if } \alpha \leq \alpha+(\beta-\alpha) y<\beta \\
1, & \text { if } \alpha+(\beta-\alpha) y \geq \beta\end{cases} \\
& = \begin{cases}0, & \text { if } y<0 \\
y, & \text { if } 0 \leq y<1 \\
1, & \text { if } y \geq 1\end{cases}
\end{aligned}
$$

Clearly, F_{Y} is not differentiable at 0 and 1. Hence, the p.d.f. of Y is

$$
f_{Y}(y)=\left\{\begin{array}{l}
1, \text { if } 0<y<1 \\
0, \text { otherwise }
\end{array}\right.
$$

Therefore, $Y \sim U(0,1)$.
Example 2. Let $a>0$ be a real constant. A point X is chosen at random on the interval $(0, a)$ (i.e., $X \sim U(0, a)$).
(1) If Y denotes the area of equilateral triangle having sides of length X, find the mean and variance of Y.
(2) If the point X divides the interval $(0, a)$ into subintervals $I_{1}=(0, X)$ and $I_{2}=$ $[X, a)$, find the probability that the larger of these two subintervals is at least the double of the size of the smaller subinterval.

Solution:

(1) We have $Y=\frac{\sqrt{3}}{4} X^{2}$. Then

$$
\begin{array}{r}
E(Y)=\frac{\sqrt{3}}{4} E\left(X^{2}\right)=\frac{\sqrt{3}}{12} a^{2} ; \\
E\left(Y^{2}\right)=\frac{3}{16} E\left(X^{4}\right)=\frac{3}{80} a^{4} ; \\
\operatorname{Var}(Y)=E\left(Y^{2}\right)-(E(Y))^{2}=\frac{a^{4}}{80} .
\end{array}
$$

(2) The required probability is

$$
\begin{aligned}
p & =P(\{\max (X, a-X) \geq 2 \min (X, a-X)\}) \\
& =P\left(\left\{a-X \geq 2 X, X \leq \frac{a}{2}\right\}\right)+P\left(\left\{X \geq 2(a-X), X>\frac{a}{2}\right\}\right) \\
& \left.=P\left(X \leq \frac{a}{3}\right\}\right)+P\left(\left\{X \geq \frac{2 a}{3}\right\}\right) \\
& =F_{X}\left(\frac{a}{3}\right)+1-F_{X}\left(\frac{2 a}{3}\right) \\
& =\frac{1}{3}+1-\frac{2}{3}=\frac{2}{3}
\end{aligned}
$$

2. Normal or Gaussian Distribution

(1) Let $\mu \in \mathbb{R}$ and $\sigma>0$ be real constants. A continuous random variable X is said to have a normal (or Gaussian) distribution with parameters μ and σ^{2} (written as $\left.X \sim N\left(\mu, \sigma^{2}\right)\right)$ if probability density function of X is given by

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}},-\infty<x<\infty
$$

(2) The $N(0,1)$ distribution is called the standard normal distribution. The p.d.f. and the d.f. of $N(0,1)$ distributions will be denoted by ϕ and Φ respectively, i.e.,

$$
\begin{array}{r}
\phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}},-\infty<z<\infty \\
\Phi(z)=\int_{-\infty}^{z} \phi(x) d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-\frac{x^{2}}{2}} d x .
\end{array}
$$

(3) We know that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$ and $\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} d x=\sqrt{2 \pi}$.

Clearly if $X \sim N\left(\mu, \sigma^{2}\right)$, then

$$
f_{X}(\mu-x)=f_{X}(\mu+x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{x^{2}}{2 \sigma^{2}}}, \forall x \in \mathbb{R}
$$

Thus the distribution of X is symmetric about μ. Hence,

$$
X \sim N\left(\mu, \sigma^{2}\right) \Rightarrow F_{X}(\mu-x)+F_{X}(\mu+x)=1, \forall x \in \mathbb{R} \text { and } F_{X}(\mu)=\frac{1}{2}
$$

In particular,

$$
\Phi(-z)=1-\Phi(z), \forall z \in \mathbb{R} \text { and } \Phi(0)=\frac{1}{2} .
$$

Suppose that $X \sim N\left(\mu, \sigma^{2}\right)$. Then the p.d.f. of $Z=\frac{X-\mu}{\sigma}$ is given by

$$
\begin{aligned}
f_{Z}(z) & =f_{X}(\mu+\sigma z)|\sigma|,-\infty<z<\infty \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}},-\infty<z<\infty
\end{aligned}
$$

i.e.,

$$
X \sim N\left(\mu, \sigma^{2}\right) \Rightarrow Z=\frac{X-\mu}{\sigma} \sim N(0,1) .
$$

Thus

$$
X \sim N\left(\mu, \sigma^{2}\right) \Rightarrow F_{X}(x)=P(\{X \leq x\})=P\left(\left\{Z \leq \frac{x-\mu}{\sigma}\right\}\right)=\Phi\left(\frac{x-\mu}{\sigma}\right), \forall x \in \mathbb{R}
$$

Now, the m.g.f. of $X \sim N\left(\mu, \sigma^{2}\right)$ is

$$
\begin{aligned}
M_{X}(t) & =E\left(e^{t X}\right) \\
& =\int_{-\infty}^{\infty} e^{t x} f_{X}(x) d x \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t x} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x \\
& =\frac{e^{\mu t}}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-y^{2}+\sqrt{2} \sigma t y} d y \text { (by putting } \frac{x-\mu}{\sqrt{2} \sigma}=y \text {) } \\
& =\frac{e^{\left(\mu t+\frac{\sigma^{2} t^{2}}{2}\right)}}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\left(y-\frac{\sqrt{2} \sigma t}{2}\right)^{2}} d y \\
& =e^{\left(\mu t+\frac{\sigma^{2} t^{2}}{2}\right)}, \forall t \in \mathbb{R} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& M_{X}^{(1)}(t)=\left(\mu+\sigma^{2} t\right) e^{\left(\mu t+\frac{\sigma^{2} t^{2}}{2}\right)}, \forall t \in \mathbb{R} ; \\
& M_{X}^{(2)}(t)=\left(\sigma^{2}+\left(\mu+\sigma^{2} t\right)^{2}\right) e^{\left(\mu t+\frac{\sigma^{2} t^{2}}{2}\right)}, \forall t \in \mathbb{R} ; \\
& E(X)=M_{X}^{(1)}(0)=\mu ; \\
& E\left(X^{2}\right)=M_{X}^{(2)}(0)=\mu^{2}+\sigma^{2} ; \\
& \text { and } \operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=\sigma^{2} .
\end{aligned}
$$

