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Photoacoustic (PA) spectroscopy is considered to be one of the most effective ways to measure the levels of hemato-
crit (H) and oxygenation saturation (SO2) of blood, which are essential for diagnosing blood-related illnesses. This
simulation study aims to investigate the impact of individual optical parameters, i.e., optical absorption coefficient
(µa), scattering coefficient (µs ), and anisotropy factor (g ), on the accuracy of this technique in estimating the
blood properties. We first performed the Monte Carlo simulations, using realistic optical parameters, to obtain
the fluence maps for various samples. The wavelengths of the incident light were chosen to be 532, 700, 1000, and
1064 nm. Thereafter, the k-Wave simulations were executed, incorporating those fluence maps to generate the
PA signals. The blood properties were obtained using the PA signals. We introduced variations in µa, µs , and g
ranging from−10% to+10%,−10% to+10%, and−5% to+1%, respectively, at 700 and 1000 nm wavelengths.
One parameter, at both wavelengths, was changed at a time, keeping others fixed. Subsequently, we examined how
accurately the blood parameters could be determined at physiological hematocrit levels. A 10% variation in µa

induces a 10% change in H estimation but no change in SO2 determination. Almost no change has been seen for µs

variation. However, a 5% (−5% to 0%) variation in the g factor resulted in approximately 160% and 115% changes
in the PA signal amplitudes at 700 and 1000 nm, respectively, leading to ≈125% error in hematocrit estimation
and ≈14% deviation in SO2 assessment when nominal SO2 = 70%. It is clear from this study that the scattering
anisotropy factor is a very sensitive parameter and a small change in its value can result in large errors in the PA
estimation of blood properties. In the future, in vitro experiments with pathological blood (inducing variation in
the g parameter) will be performed, and accordingly, the accuracy of the PA technique in quantifying blood H and
SO2 will be evaluated. ©2024Optica PublishingGroup

https://doi.org/10.1364/JOSAA.521238

1. INTRODUCTION

The generation of acoustic waves by any target tissue due to
the absorption of light is known as the photoacoustic (PA)
effect. Sir Alexander Graham Bell first observed the PA effect in
1880 [1]. The light-absorbing molecules, i.e., chromophores
(like hemoglobin, myoglobin, melanin, etc.), are thermally
excited by illuminating tissue with laser pulses of short duration
and thus generating pressure waves, which can be captured
in the form of PA signals (temperature rise in tissue is ≈0.1 K
and pressure rise is ≈1 kPa) [2]. The PA microscopy (PAM)
and tomography (PAT) techniques have been developed by
exploiting the PA effect. These methods are able to display
spatial distributions of hemoglobin concentration and oxygen
saturation (SO2) level of blood vessels of the imaging region
(i.e., tissue) with an imaging depth of nm to mm range [3].

Therefore, both the anatomical information and functional
information are retained in the PA imaging modality [4–6].
Yao et al. developed a special PAM called ultraviolet PAM (UV-
PAM) for imaging of cell nuclei in intact biological tissue [7].
Sun et al. reported a method to use 3D multispectral quanti-
tative PAT to measure hemoglobin concentration and tissue
oxygenation at finger joints in vivo and evaluated its ability
to detect osteoarthritis in the hand [8]. Recently, improved
PA imaging devoid of different artifacts has been achieved
with the help of machine learning, deep learning, and artificial
intelligence methods [9–11].

The initial PA pressure rise (p0) in a tissue due to absorption
of light is given by p0 = 0µa F , where 0 is the Grüeneisen
parameter, F represents the fluence distribution in tissue, and
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µa is the light absorption coefficient. It is clear that the PA pres-
sure is linearly proportional to the light absorption coefficient of
the tissue. Further, it is also linearly proportional to the fluence
distribution, which is essentially governed by the scattering
of the light beam inside the tissue. The scattering coefficient
(µs ) and anisotropy factor (g ) dictate how photons will traverse
inside the tissue through scattering events. In other words, these
three optical parameters (µa , µs , and g ) play a crucial role in
the emission of PA waves from the tissue under investigation.
A vast amount of research has been conducted to study and
evaluate the optical parameters of blood. For example, Faber
et al. conducted a study on the scattering properties of oxygen-
ated and deoxygenated whole blood in the spectral range from
250 to 1100 nm. They performed a Kramers–Kronig analysis
to determine the corresponding complex refractive indices [12].
Meinke et al. investigated the role of platelets and plasma (PLS)
on the optical attributes of blood [13]. They also reported the
optical behavior of simple blood samples, red blood cells (RBCs)
suspended in phosphate buffered saline (PBS). Friebel et al.
conducted a similar study with human blood in the spectral
range from 250 to 2000 nm. The inverse Monte Carlo (MC)
simulation was implemented to fetch those parameters from
experimental data [14]. An excellent review of various works
can be found in [15]. This study also illustrates how to calculate
µa andµs of a blood sample at any arbitrary H level if those are
experimentally obtained at any other H level.

PA investigations on blood samples have been performed
by many groups in the context of PA imaging. Hochuli et al.
extensively investigated the accuracy of the PA method for
assessing the blood oxygen level and the role of selecting opti-
mal wavelengths in their work [16]. Bench and Cox employed
a multiwavelength linear unmixing technique to estimate
intravascular SO2 levels [17]. It is pertinent to note here that
near-infrared (NIR) spectroscopy has also been widely used for
monitoring tissue oxygen saturation as well as for functional
imaging applications. More recently Sudakou et al. [18] have
proposed a new method of data analysis based on a change in
moments of distribution of time of flights of NIR photons that
could potentially help in determining oxygen saturation of
the different layers of tissue. The PA technique has also been
employed to characterize blood samples in vitro [19–26]. The
dual-wavelength PA technique works well for normal blood
samples, where individual cells are suspended in a fluid medium
(PBS or PLS). However, there are many pathological situations
where RBCs deform, lose deformability, form aggregates, gen-
erate clumps, and explode, releasing hemoglobin molecules in
the ambient medium [20,23,27]. For instance, RBCs become
spherical and stiff in the case of malaria [28,29]; erythrocytes
become greatly distorted in the case of Sickle cell disease, stom-
atocytosis, and echinocytosis [30,31]; RBCs build rouleaux
for diabetic patients [32]; microclots indicate the early stage
of thrombosis [19]; malaria and anemia can lead to hemolysis
[24]. It may be anticipated thatµs and g values for pathological
blood samples will differ significantly with respect to the cor-
responding normal samples due to changes in shape, size, and
spatial organization of cells. The fluence distribution is expected
to be greatly affected by such a change, which in turn leads to
a change in the PA signal. As a result of that, PA estimations of
hemoglobin and oxygenation may become erroneous. We have
conducted a simulation forward study to investigate the impact

of variation of the optical parameters on the quantitative PA
evaluations of the blood properties.

The objectives of the paper are as follows: i) to present the
mathematical equations for calculations of optical parameters
of blood samples utilizing published experimental data for sub-
sequent PA signal simulations, ii) to obtain the blood hematocrit
and oxygenation for various samples using spectroscopic rela-
tions, and iii) to quantify the effects of variations of the optical
parameters on the PA estimation of the above-mentioned blood
attributes. At first, we utilized the MC simulation technique
to obtain the fluence maps of a series of blood samples. This
study is conducted at four different wavelengths of the inci-
dent light (532, 700, 1000, and 1064 nm) [33–35]; then the
k-Wave toolbox is integrated to produce the corresponding
PA signals detected by a transducer with 7.5 MHz center fre-
quency and 70% fractional bandwidth [36]. After that, the
blood parameters are computed. Two types of blood samples
were investigated: RBCs suspended in a PBS medium (referred
to as the RBC + PBS in the remaining text); RBCs suspended
in a PLS medium (denoted by RBC + PLS from now onwards).
Finally, we have systematically introduced ±10% variations
in µa , µs , and −5% to 1% variation in g values at 700 and
1000 nm for various test samples. For simplicity, one parameter
(at both wavelengths) has been altered at a time keeping others
fixed. The accuracy of the PA technique in assessing these blood
parameters is quantified. It has been found that the anisotropy
factor is the most critical parameter and a small change in the
value of g can result in large errors in the H and SO2 estimations
for the dual-wavelength PAs.

2. MATERIALS AND METHODS

A. Definition and Calculations of Optical Parameters
of Blood

1. Optical AbsorptionCoefficient

The optical absorption coefficient is defined as the amount of
energy that is absorbed by a medium per unit length from an
incident light beam of a single wavelength. The absorption of
light energy takes place because of the presence of chromophores
in the medium. It is given by

µa =

J∑
j=1

C j ε j , (1)

where C j and ε j are the molar concentration and molar extinc-
tion coefficient for the j th species (chromophore). In blood,
hemoglobin is greatly abundant and also the key absorber in
the optical window (preferred for biomedical imaging). Other
chromophores (e.g., lipids, collagen) have at least an order of
magnitude lower absorption in this band [37]. Absorption of
light energy causes Hb and HbO molecules to jump from one
vibrational energy state to another. Measured PA signal arises
predominantly from the Hb and HbO.

A healthy RBC typically encloses approximately 280 million
hemoglobin molecules providing molar concentration (inside
RBC), CHb ≈ 5.34× 10−3 moles/L. Consider that µHb

a ,H0
is

the light absorption coefficient for a fully deoxygenated blood
sample having hematocrit H0. The absorption coefficient for
such a solution is
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µHb
a ,H0
=CHb H0εHb + H0 fRBCµ

W
a + (1− H0)µ

M
a , (2)

where fRBC is the fractional water content in erythrocyte; µW
a

and µM
a are the light absorption coefficients for water and the

suspending medium (PBS or PLS), respectively. This sample is
termed the reference sample. Hence, for a similar medium with
hematocrit H, one can write

µHb
a ,H =CHb HεHb + H fRBCµ

W
a + (1− H)µM

a . (3)

If µHb
a ,H0

is known beforehand then that of the latter sample can
be estimated by utilizing the following formula:

µHb
a ,H =

H
H0

[
µHb

a ,H0
− H0 fRBCµ

W
a − (1− H0)µ

M
a

]
+ H fRBCµ

W
a + (1− H)µM

a . (4)

It is assumed here that the molar extinction coefficient remains
the same for both samples. Analogously, for a fully oxygenated
blood sample, one derives

µHbO
a ,H =

H
H0

[
µHbO

a ,H0
− H0 fRBCµ

W
a − (1− H0)µ

M
a

]
+ H fRBCµ

W
a + (1− H)µM

a . (5)

Therefore, the absorption coefficient of a blood sample with
arbitrary H and SO2 levels can be readily calculated by utilizing
Eqs. (4) and (5) as

µa ,H =

[
ηµHbO

a ,H + (1− η)µ
Hb
a ,H

]
, (6)

where η= SO2 is the oxygen saturation level of the blood sam-
ple. Experimentally measuredµa spectra for fully deoxygenated
and oxygenated hemoglobin solutions at H0 = 33.2% can be
found in Fig. 1 of [14]. Taking these data as the reference data,
numerical values of µa for fully deoxygenated and oxygenated
samples at any hematocrit level can be calculated employing
Eqs. (4) and (5). For instance, plots ofµa spectra for deoxygen-
ated and oxygenated hemoglobin solutions at H = 20% are
shown in Fig. 1A. The corresponding µa curves for solely PBS
and PLS media are plotted in Fig. 1D (regenerated from Fig. 1
of [13]).

2. Optical ScatteringCoefficient

The scattering coefficient describes how much energy of a
monochromatic incident light beam will be dispersed by a
scattering medium of unit length. It is a measurable quantity. It
is proportional to the product of the hematocrit, hematocrit-
dependent scaling factor β(H), and scattering cross-section
(σs ):

µs ,H0 = H0β(H0) σs . (7)

The scattering cross-section for suspending particles of blood
(i.e., RBCs) is a fundamental quantity and it depends upon the
size and shape of RBCs, and the wavelength of the incident opti-
cal beam. Here we assume that the cells are identical in size and
shape. In other words, it does not depend upon the level of dilu-
tion of the sample, allowing us to write [15]

Fig. 1. (A) The spectra for the optical absorption coefficient for
fully oxygenated and deoxygenated hemoglobin solutions at H = 20%
(reference data for H0 = 33.2% taken from Fig. 1 of Friebel et al.
[14] and scaled them properly, using Eqs. (4) and (5), to generate
data for H = 20%). (B) The spectra for optical scattering coefficient
for blood samples for two different suspending media at the same
hematocrit level H = 20% (reference data for H0 = 8% taken from
Fig. 4 of [13]); Eq. (9) is used to generate these curves. (C) Plots of
scattering anisotropy factor (data taken from Fig. 4 of [13]). (D) The
optical absorption spectra for PBS and PLS media (reproduced from
Fig. 1 of [13]).

µs ,H

β(H)H
=

µs ,H0

β(H0) H0
, (8)

where µs ,H is the optical scattering coefficient for a blood sam-
ple with hematocrit H;µs ,H andµs ,H0 are evaluated at the same
wavelength. The hematocrit-dependent scaling factor connects
dependent (for the dense system) and independent (for the spare
system) scattering scenarios. Various functional forms of β(H)
are available in the literature [38–40]. Equation (7) for β(H)=
(1− H)2 yields [15]

µs ,H =
(1− H)2 H

(1− H0)
2 H0

µs ,H0 . (9)

Equation (9) provides a way to estimate the scattering coefficient
of a blood sample with a known hematocrit level using that of
a reference sample. Note that the first sample with hematocrit
H0 is considered as the reference blood sample. Further,µs ,H0 is
known a priori.

Experimental estimations of µs spectra for RBC + PBS
and RBC + PLS samples at H0 = 8% are presented in Fig. 4
of [13]. Accordingly, one can easily obtain the µs spectrum at
any hematocrit level utilizing Eq. (9). For example, µs spectra
for RBC + PBS and RBC + PLS suspensions at H = 20% are
displayed in Fig. 1B.

3. ScatteringAnisotropy Factor

The anisotropy factor is a measure of the amount of forward
direction retained with a scattering event. Consider a randomly
polarized light beam scattered by an optical inhomogeneity. Let
S11 be the scattered intensity along the angle θ concerning the
forward direction. Its component along the forward direction is
S11 cos θ . Accordingly, the g factor, which is the mean of cos θ ,
is given by
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g =

∫ π
0 S11 cos θ sin θdθ∫ π

0 S11 sin θdθ
. (10)

Light scattering by a spherical scatterer can be described ana-
lytically employing the Mie theory. Thus, the angle-dependent
scattered intensity and subsequently, the g factor can be cal-
culated easily using this framework [41]. The corresponding
spectrum of g for a spherical scatterer of radius a = 2.75 µm
mimicking an RBC can be found in [42] when the cell is sus-
pended in a PBS/PLS medium. The variation of the g factor
with optical wavelength for real RBCs obtained from experi-
mental data is reported too. Figure 1C presents such plots (taken
from Fig. 4 of [14]). In general, the Mie-theory-based graphs
differ significantly compared to the experimentally estimated g
values [42].

B. Propagation of Photons in Tissue

The optical parameters mentioned above dictate how photons
traverse through a tissue; µa controls the amount of photon
deposition, whereas µs and g regulate its spatial profile. The
radiative transfer equation (RTE) can faithfully model photon
propagation in tissue. The diffusion equation (DE) is a special
case of the RTE (when µa �µs , i.e., medium almost reaches
the scattering isotropy) and has been extensively used. It is a
valid model for the propagation of photons in both the ballistic
and diffusion regimes (<100 µm). The RTE is expressed as
[43,44]

1

c
∂ R̃(Er , ζ̂ , t)

∂t
=−

(
ζ̂ .∇ + (µs +µa )

)
R̃
(
Er , ζ̂ , t

)
+µs

(∫
4π

R̃
(
Er , ζ̂ , t

)
f
(
ζ̂ .ζ̂ ′

)
d�′

)
+6

(
Er , ζ̂ , t

)
,

(11)

where R̃(Er , ζ̂ , t) is the radiance; ζ̂ and ζ̂ ′ are the directions
of incidence and scattering of photons; c is the speed of light
in vacuum. Further, f (ζ̂ ′.ζ̂ ) is the Henyey–Greenstein phase
function. Equation (11) is also called the Boltzmann equation.
The Henyey–Greenstein phase function is defined as [45]

f
(
ζ̂ .ζ̂ ′

)
=

1

4π

(1− g 2)(
1+ g 2 − 2g ζ̂ .ζ̂ ′

)
and

∫
4π

(
ζ̂ .ζ̂ ′

)
f
(
ζ̂ .ζ̂ ′

)
d�= 1 where ζ̂ .ζ̂ ′ = cos θ,

(12)

where� is the solid angle and6(Er , ζ̂ , t) is the source term [46];
the scattered photon beam makes an angle θ with the incident
photon beam. The time-independent form of Eq. (11) is[

ζ̂ .∇ + (µs +µa )
]

R(Er , ζ̂ )

=µs

(∫
4π

R(Er , ζ̂ ) f
(
ζ̂ .ζ̂ ′

)
d�′

)
+6(Er , ζ̂ ). (13)

Analytical solutions of Eq. (13) are possible only for some
simplistic geometries like infinite slab, homogeneous medium
possessing spherical/cylindrical symmetry, etc. Otherwise,
being an integro-differential equation solving RTE is in general
a very complex mathematical task. It may be possible to solve
this equation numerically for complex problems. Methods
like the finite element method, path integral method, integral
transport method, and MC simulations can be employed.

C. Generation of Photoacoustic Waves in Tissue

The time-dependent PA equation under stress and thermal con-
finements is presented as(

E∇
2
−

1

v2

∂2

∂t2

)
p(Er , t)=−

β

C P

∂H(Er , t)
∂t

, (14)

where β, C P , and H(Er , t) are the isobaric volume expan-
sion coefficient, isobaric specific heat, and heating function
(i.e., the amount of heat deposited per unit time per unit vol-
ume), and p(Er , t) is the pressure at a location Er at time t . For a
harmonically varying incident laser beam, it may be given by

H(Er , t)= I0(Er )µa e−iωt , where I0(Er , t)=
∫

4π
R̃
(
Er , ζ̂ , t

)
d�.

(15)
It may be mentioned here that the heating is caused by light
absorption. If the corresponding light fluence rate is denoted by
F (Er , t), the heating function, for a delta function laser pulse,
happens to beH(Er , t)=µa F (Er )δ(t).

For the sake of completeness, various approaches to solv-
ing Eq. (14) are briefly discussed herein. Note that Eq. (14)
is an inhomogeneous partial differential equation; the term
present on the right-hand side is called the source term. The
Green’s function method has been extensively utilized to obtain
a solution to Eq. (14) [47]. It provides an integral solution to
the problem. Therefore, it is possible to obtain a solution for
a source with an arbitrary shape and size (for an acoustically
homogeneous source). The PA signal from an illuminated
region containing many independent sources (e.g., RBCs sus-
pended in blood) has also been calculated deploying the discrete
particle approach [48]. In this framework, the PA fields from
individual cells approximating as spheres are calculated first in
the frequency domain and then the linear superposition princi-
ple is employed to estimate the resultant PA field. Subsequently,
the inverse Fourier transform is implemented to obtain the
collective PA signal. Equation (14) can be solved numerically as
well. For example, in the k-Wave toolbox, first order partial dif-
ferential equations are solved using the k-space pseudo-spectral
method.

D. Photoacoustic Estimation of Blood Hematocrit
and Oxygen Saturation

The peak-to-peak pressure from a PA signal can be obtained as

Ppp =max[p(Er , t)] −min[p(Er , t)]. (16)

The total hemoglobin and blood oxygen saturation can be
estimated as [20]
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THb=CHbO +CHb =
P λ1

pp ×1ε
λ2 − P λ2

pp ×1ε
λ1

ε
λ1
Hb × ε

λ2
HbO − ε

λ2
Hb × ε

λ1
HbO

(17)

and

SO2 =
CHbO

CHbO +CHb
=

P λ2
pp × ε

λ1
Hb − P λ1

pp × ε
λ2
Hb

P λ1
pp ×1ελ2 − P λ2

pp ×1ελ1
, (18)

respectively, with 1ελ = ελHbO − ε
λ
Hb. The total hemoglobin

and oxygen saturation for various blood samples have been
assessed from simulated PA signals by implementing Eqs. (17)
and (18), respectively.

E. Computational Aspects

1. Computation ofOptical Parameters

The simulation requires numerical values of µa , µs , and g for
blood samples considered in this study. The simulations were
carried out for four different wavelengths of the incident light
(532, 700, 1000, and 1064 nm) for five different blood samples
having hematocrit levels, H = 10% to 50%. The choice of the
wavelengths was dictated by the fact that 700 and 1000 nm
wavelengths are situated on either side of the isosbestic point of
blood absorption spectra (800 nm). The other two wavelengths,
1064 and 532 nm, correspond to the fundamental and second
harmonic wavelengths of the Nd:YAG laser. The 532 nm wave-
length also happens to be close to the Q band of Hb absorption.

RBCs were either suspended in PBS or PLS. The oxygen sat-
uration levels were fixed to SO2 = 70% and 90%, resembling
venous and arterial blood.

Taking the samples of Fig. 1 of [14] as reference samples,
numerical values of µa of our samples were calculated employ-
ing Eqs. (4)–(6). The top two rows of Fig. 2 demonstrate
how µa varies with H at each probing optical wavelength for
SO2 = 70% and SO2 = 90%, respectively. As expected, µa

grows linearly with H. The estimated numerical values are also
included in Supplement 1, Table S1 (rows: 4, 7, 10, and 13,
columns: 3 to 12 for SO2 = 70%; and rows: 19, 22, 25, and 28,
columns: 3 to 12 for SO2 = 90%). Note that the PBS solution
absorbs light greatly above 1000 nm, whereas the contribution
of the PLS medium becomes significant below 600 nm and
above 1000 nm (see Fig. 1D). The contribution of the ambient
medium is included while calculating the optical absorption
coefficient of blood.

Similarly, plots of calculated values of µs for samples investi-
gated in this study are presented in the third row of Fig. 2. These
values were calculated using Eq. (9). The data sets for PBS and
PLS media experimentally determined at H = 8% in Fig. 4
of [13] were considered as reference data. Figure 2 (third row)
exhibits nonlinear variation with H for all optical wavelengths.
The computed numerical values of µs are also included in
Supplement 1, Table S1 (rows: 5, 8, 11, and 14, columns: 3 to
12, for SO2 = 70%; and rows: 20, 23, 26, and 29, columns: 3 to
12 for SO2 = 90%).

Fig. 2. The variations of µa , µs , and g at five different hematocrit levels (10% to 50%) at four different wavelengths of the incident light (532,
700, 1000, and 1064 nm). (a)–(d), (A)–(D) Plots ofµa with H. (A)–(D) Nominal SO2, NSO2 = 70%, and NSO2 = 90% for (a)–(d). The third and
fourth rows plot variations ofµs and g with hematocrit at those optical wavelengths. The acronyms RBC + PBS and RBC + PLS indicate that RBCs
are suspended in PBS and PLS media, respectively.

https://doi.org/10.6084/m9.figshare.25733511
https://doi.org/10.6084/m9.figshare.25733511
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The plots of the g factor for our blood samples are incorpo-
rated in the fourth row of Fig. 2. The numerical values were
taken from Fig. 4 of [14] as mentioned earlier. It is evident from
Fig. 2 (fourth row) that the g values remain unchanged as they
do not depend on H for both the surrounding media. The same
values are also provided in Supplement 1, Table S1 (rows: 6, 9,
12, and 15, columns: 3 to 12, for SO2 = 70%; and rows: 21, 24,
27, and 30, columns: 3 to 12 for SO2 = 90%).

2. Simulation of FluenceDistributions

The MC multilayer (MCML) program [33] was employed
for simulating the propagation of photons in homogeneous
blood samples. The photon-beam made a 0◦ with the normal to
the exposed surface. Photons were launched with a predefined
weight w0. The length ls traversed by a photon between two
successive scattering events was random. These path lengths
(ls ) were determined following the function − ln(κ)

µs
, where κ

was a uniformly distributed random number lying between
zero and one. Near the boundary, the photon either shifts to a
new location (if there is no boundary hit) or keeps a step for-
ward depending on the nearest boundary distance (if there is
a boundary hit), following which, depending on the Fresnel
coefficient, the photon is either reflected back in the same
medium or transmitted to the adjoining medium. The direc-
tion cosines of the reflected/transmitted photon are modified
before moving it to the new position (by a distance equivalent
to the remaining partial step size). The Henyey–Grenstein
function was used to calculate the scattering angle, given as

P (cos θ)= 1−g 2

2(1−g+2g cos θ)3/2
. The azimuthal angle was selected

from a uniformly distributed random number varying from
zero to 2π . After each scattering event, the weight of the photon
was reduced by a factor of (1− δw0)with δw0 =

µa
µa+µs

. These
steps (absorption and scattering) were repeated until the weight
of the photon became less than a preset threshold value (in our
case 10−4). Finally, the Roulette method was used to check the
survival possibilities of the photons. The idea was that whenw0

of a photon became lower than the threshold (wTh), the photon
had a single chance to survive and contribute to fluence distri-
bution in an unbiased manner. To achieve this, the weight of the
surviving photon was increased by a factor that is reciprocal to
the probability of the survival in the Roulette test.

In this study, the tissue volume was discretized into
(nx , n y , nz)= (150,150,150) voxels, with edges d x =
dy = dz= 0.005 cm. The laser beam diameter was fixed to
0.05 cm. The optical properties of these voxels were chosen from
Supplement 1, Table S1 depending upon the blood sample. The
simulations were performed in a desk-top computer with spec-
ifications: Intel Core Intel Core i7 12700 CPU at 2.1 GHz, 12
cores, 12 logical processors, Microsoft Windows 11 Professional
OS, 128.0 GB DDR5 RAM, 16 GB NVIDIA RTX A4000
GPU with GCC-6.3.0-1, and MATLAB 2023b. We employed
1 million photons in an MC simulation (average computation
time was about 5 min). It may be mentioned here that other
variants of MC simulation that include parallel architecture
using a message passing interface (MPI) and graphics processing
unit (GPU) programming for faster simulation of light propaga-
tion in layered tissues are also available in the literature [34,49].

Moreover, analytical solutions of the diffusion equation are
also available for a medium with multiple planner interfaces,
which permits accurate estimation of fluence distribution in
multi-layered tissue [18,35].

3. Simulation of PASignals

The MC simulation provided the 3D fluence matrix for each
sample. After that, the k-Wave simulation was performed
to simulate the dynamics of the propagation of PA waves in
3D. A schematic of the simulation setup is shown in Fig. 3.
The initial pressure rise for individual voxels was computed
to be p0 = 0µa F . The size of the simulation domain was
taken to be (Nx , Ny , Nz)= (170,170,220) grid points
with d x = dy = dz= 0.005 cm. The speed of sound and
density of the sample and coupling medium were set as
vBlood = vMed = 1500 m/s and ρBlood = ρMed = 1000 kg/m3,
respectively. The width of the perfectly matched layer (PML)
was assigned to be 0.05 cm. The PML prevents unwanted
boundary reflections of acoustic waves. An anisotropic absorp-
tion coefficient of 100 np/m was set inside the PML. The
time-dependent PA pressure data were stored for grid points
situated within the circular region resembling a flat transducer
with a radius of 0.05 cm and consisting of Nsp = 317 grid
points. Its center was located at (Nx/2, Ny/2, Nz − 15). The
center frequency and fractional bandwidth of the sensor points
were specified to be 7.5 MHz and 70%, respectively. The PA sig-
nal for each sample was computed by summing up sensor data
and subsequently, the peak-to-peak amplitude was evaluated for
estimating the H and SO2 levels from Eqs. (17) and (18). The
simulations were executed in the same computer enabling the
GPU environment. The computation time was about 14 s per
simulation.

4. Impact of Variation ofOptical Parameters on the
Assessment of Blood H and SO2

In the next stage, we systematically studied the impact of varia-
tion of the optical parameters on the PA estimation of blood H
and SO2 using PA signals simulated at 700 and 1000 nm and
implementing Eqs. (17) and (18). Here we considered a series
of blood samples at fixed H = 40% but with SO2 = 70% and
SO2 = 90%. For the first class of samples, the numerical values
of µa at 700 and 1000 nm were jointly varied from −10% to
10%; however, µs and g were kept constant (see rows 3 to 12
of Supplement 1, Table S2) (µs = 711.15 cm−1, g = 0.988 at

Fig. 3. Computational models for the Monte Carlo and k-Wave
simulations [33,36].
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700 nm; µs = 549.74 cm−1, g = 0.986 at 1000 nm). For the
second set of samples, µs was altered from −10% to 10% at
each wavelength; nevertheless, we did not vary µa and g (see
rows 13 to 22 of Supplement 1, Table S2). For the third group
of samples, g values were unitedly changed from−5% to 1% at
these wavelengths butµa andµs were kept fixed (see rows 23 to
36 of Supplement 1, Table S2). The samples, with 0% variation,
served as the controls for those groups. The role of the g factor
was further assessed at various hematocrit levels; for the first,
second, and third groups hematocrits were fixed at H = 20%,
30%, and 40%, respectively. Supplement 1, Table S3 includes
the numerical values of the optical parameters of these classes of
samples.

3. NUMERICAL RESULTS

Figure 4 displays the spatial distributions of sensitivity to
absorption for the blood samples having hematocrit levels
H = 10% and 50%. The maps are shown for four dif-
ferent wavelengths of the incident light (532, 700, 1000,
and 1064 nm) and also for two surrounding media with
SO2 = 70% [Figs. 4A–H for PBS and 4(a)–(h) for PLS].
Similarly, Figs. 4I–4P and 4(i)–4(p) demonstrate the same
maps but for SO2 = 90%. The photons penetrate more at
higher wavelengths (700, 1000, 1064 nm) and least at 532 nm
(compare rows from 1 to 4). For H = 50%, the magnitudes
of absorbance maps are stronger in the top layers compared
to those of H = 10% (compare columns 1, 3; 2, 4; 5, 7; and
6, 8). The contours corresponding to the RBC + PLS samples
are more stretched in the forward direction rather than the
lateral direction, whereas this pattern is less prominent for the
RBC + PBS samples (compare columns 1, 2; 3, 4; 5, 6; and 7, 8).

The PA signals for a series of samples were computed using
the respective fluence distributions. Some representative signals

are shown in Supplement 1, Fig. S1. Accordingly, the hematocrit
and oxygen saturation levels were estimated for each sample.
The plots of the estimated hematocrit levels for various sam-
ples are shown in Figs. 5A–5F for different wavelength pairs
of the incident light. To convert the PA estimate of H into the
absolute H of a sample, the sample with the highest hematocrit,
H = 50%, has acted as the calibrating system. The estimated
and nominal H values in general exhibit a close match. The esti-
mation error is maximum at H = 30% (see top row of Fig. 5).
However, in Fig. 5F, estimation error increases as the hematocrit
decreases.

The plots in Figs. 6A–6F represent variations of the evaluated
SO2 at different hematocrit levels. The assessed SO2 levels are
almost close to the nominal value, SO2 = 70% at 532–700 nm
(maximum estimation error ≈14%, Fig. 6A), 700–1000 nm
(highest estimation error ≈10%, Fig. 6D), and 700–1064 nm
(maximum estimation error <8%, Fig. 6E) wavelength pairs.
The errors are comparable for SO2 = 90% as well. In the
rest of the figures, i.e., for 532–1000, 532–1064, and 1000–
1064 nm wavelength combinations, the estimated SO2 values
demonstrate drastic variations and become mostly unrealistic.

The next step has been to systematically vary µa , µs , g
and accordingly, study how they impact PA estimations of
the hematocrit and oxygen saturation levels. The hematocrit
and oxygen saturation levels have been fixed at H = 40%
and SO2 = 70% and SO2 = 90%, respectively for this
investigation. Further, saline water has been chosen as the
surrounding medium. The simulation results are detailed in
Fig. 7. Figures 7A and 7(a) confirm that peak-to-peak amplitude
grows linearly with increasing µa . A 10% change in µa causes
approximately the same amount of change in the peak-to-peak
amplitude at 700 nm (also in 1000 nm). This is expected as the
PA amplitude is linearly proportional to µa . The same trend is

Fig. 4. Contour plots of spatial distribution of sensitivity to absorption (in log scale) for various wavelengths of the incident light (532, 700, 1000,
and 1064 nm) in blood samples with H = 10% and 50%. (A)–(H) RBCs are suspended in PBS; (a)–(h) RBCs are surrounded by the PLS medium. In
all plots, SO2 is fixed to 70%. (I)–(P), (i)–(p) Same plots but for SO2 = 90%.
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Fig. 5. The plots of the estimated versus nominal H for six different wavelength pairs. Results are shown for two different suspending media (PBS
and PLS) (nominal SO2, NSO2 = 70% and 90%).

Fig. 6. The graphs present how estimated SO2 varies with hematocrit at six different wavelength pairs for two cases, RBCs surrounded by PBS and
PLS, respectively (nominal SO2, NSO2 = 70% and 90%).

also observed in the estimation of blood hematocrit (Fig. 7D).
Nevertheless, such a variation does not impact the assessment
of blood SO2 (Fig. 7G). The peak-to-peak amplitude almost
remains constant though µs is altered from −10% to 10% at
each optical wavelength as can be seen from Figs. 7B and 7(b)
(compare the peak-to-peak values at 0% and 10% variations).
Moreover, both evaluations agree well with the nominal values
(Figs. 7E and 7H, respectively). Significant variation of peak-to-
peak amplitude occurs when g is altered [see Figs. 7C and 7(c)].
This quantity decreases as g increases; a more than two-fold rise
of peak-to-peak amplitude is computed for a 5% reduction of g
(compare the peak-to-peak values of PA signals at 0% and−5%
variations at 700 nm as well as in 1000 nm). The PA method
overestimates/underestimates the blood hematocrit level if g
is less/more than the actual value (see Fig. 7F). The trend is the
opposite if the PA technique is applied for the determination of
blood SO2 (see Fig. 7I).

It is interesting to note from Fig. 7 that a small variation of
the g factor can result in a large error in the PA estimations of
the blood H or SO2. Therefore, it is a natural question, how
the g factor would affect PA estimates at various hematocrit
(H) levels. This section addresses this issue. Figure 8 illustrates
the simulation outcomes at H = 20%, 30%, and 40%. For
convenience and completeness, the same graphs of Figs. 7C,
7(c), 7F, and 7I are pasted here too. The peak-to-peak amplitude
as seen previously monotonically decreases with increasing g for
all hematocrit levels (see top two rows of Fig. 8). The hematocrit
estimation manifests the same errors in all cases (e.g., compare
−5% and 0% variations in the third row in Figs. 8D–8F).
Similarly, the errors in SO2 estimation are almost identical
(fourth row of Figs. 8G–8I). Therefore, the errors for assess-
ing the H and SO2 values induced by the fluctuation of g are
comparable. However, for SO2 estimation, the error increases
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Fig. 7. Bar charts to show effects of variation of the optical parameters (µa , µs , and g ) on the peak-to-peak amplitudes for 700 and 1000 nm wave-
lengths of the incident light (A)–(C), (a)–(c), respectively, hematocrit estimation (D)–(F), and SO2 determination (G)–(I);µa andµs are varied from
−10% to 10% with respect to the controls (i.e., 0%); g is changed from−5% to 1% compared to the control (i.e., 0%). For all samples, hematocrit is
fixed to H = 40% (RBCs are suspended in PBS medium). Nominal SO2 considered to be NSO2 = 70% and 90%.

as the H level elevates with the deviation of g (see Figs. 8G–8I).
This is also consistent with Fig. 6E.

4. DISCUSSION AND CONCLUSIONS

Hb/HbO molecules greatly absorb light energy at 532 nm
making the absorption coefficient of blood very large at this
wavelength. Therefore, optical penetration at 532 nm is the
least but it is much higher at 700, 1000, and 1064 nm. It is very
prominent at a physiological hematocrit (see rows 1–4, Fig. 4).
It is also apparent from Fig. 4 that photons diffuse more into
the RBC + PLS samples than the RBC + PBS prototypes (see
columns 1, 2; 3, 4; 5, 6; and 7, 8). It is likely due to the fact that
the g factor for an RBC + PLS sample is slightly higher than the
corresponding RBC + PBS counterpart (see Figs. 2I–2L and
rows 6, 9, 12, and 15 for SO2 = 70%; rows 21, 24, 27, and 30
for SO2 = 90% of Supplement 1, Table S1). Theoretically, for-
ward scattering vis-à-vis penetration depth increases as g → 1.
It may be mentioned here that the mismatch of refractive indices
between RBC and PLS is less compared to that of RBC and PBS.
As a result of that, light scatters more in the case of the latter
sample.

The PA method has been extensively used to display tissue
hemoglobin concentration and SO2 maps in the context of

tomography and microscopy imaging. Hence, various combina-
tions of optical wavelengths have been used to achieve the same
[46,50,51]. This study also uses different incident laser beam
pairs for probing the blood H and SO2 levels. As expected, Fig. 5
confirms that H estimation does not depend on the choice of
the wavelength pairs; however, for SO2 estimation, accuracy
is sensitive to the choice of the wavelengths of the incident
light. In general, the SO2 level can be faithfully estimated if
the wavelengths of the incident light are situated on either side
of the isosbestic point of blood absorption spectra (800 nm).
Moreover, generally, 532 nm (one of the wavelengths) is not a
good choice for assessing the blood SO2 because light absorp-
tion is very strong in this wavelength and small fluctuations of
the extinction coefficients for Hb and HbO (from the nominal
values) may lead to a large error in the SO2 estimation. The cur-
rent study considers in vitro characterization of blood samples.
However, the blood is usually embedded in a vessel within some
sort of tissue whose constituents may have different light absorp-
tion properties. Therefore, the presence of other light absorbing
components and complex geometries needs to be included in
the model to examine how accurate the PA technique would be
for quantifying the blood H and SO2 under in vivo conditions.

This simulation study reveals that the absorbance map
within a sample essentially depends upon the magnitude of

https://doi.org/10.6084/m9.figshare.25733511
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Fig. 8. Same as Fig. 7 but g parameter is changed and its impacts at various hematocrit levels are tested (H = 20%, 30%, and 40%) for both the
SO2 levels.

its characteristic g parameter. The fluence map consequently
dictates what would be the size and shape of the PA source. The
absorbance maps for some representative cases are displayed
in Supplement 1, Fig. S2. For example, the thickness of the
PA source in the z-direction will increase but its width in the
x -/y -direction will decrease when g ≈ 1 (prefers forward scat-
tering). As a result of that, PA pulse width will increase but pulse
height will decrease. On the other hand, the thickness of the
PA source in the z-direction will decrease but its width in the
x -/y -direction will increase when g < 1 (promotes side scat-
tering). In that case, the PA source will be converted into a thin
but wide source. Hence, the PA pulse width will decrease but the
amplitude of the PA pulse will greatly increase. A minute change
in g value will alter the slope of a PA peak-to-peak amplitude
versus nominal H graph. Thus, estimated SO2 will significantly
deviate from the nominal value. It may be mentioned here that
the absorbance map also plays a crucial role in the context of
near-infrared spectroscopy [52,53].

This simulation study reveals that the estimated H increases
linearly when absorption coefficients are increased jointly (from
−10% to 10% with respect to the nominal values); however,
the accuracy of SO2 estimation is independent of such changes.
The assessment errors are indeed negligible even though the
scattering coefficients are altered in the same range. Upon
joint variation of the scattering anisotropy factor (at 700 and

1000 nm) by −5%, approximately 125% and 14% errors are
introduced in the blood hematocrit and oxygen saturation esti-
mations at H = 40%, respectively. The scattering anisotropy
factor has been found to be a very sensitive parameter and a small
variation of this quantity can induce significant errors in the
quantitative evaluations of blood characteristics. In the near
future, we will conduct in vitro experiments with suspensions
containing deformed/diseased RBCs and examine the per-
formance of the PA technique in assessing blood H and SO2 for
pathological samples.
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Table S1. The numerical values of the optical parameters (μa, μs and g) for different blood 



samples for four different wavelengths of the incident light (532, 700, 1000 and 1064 nm). The 
oxygen saturation remained the same for all samples [SO2 = 70% (top) and SO2 = 90% 
(bottom)].



 



Table S2. The computed values of the optical parameters (μa, μs and g) at 700 and 1000 nm 
wavelengths of the incident light for various test blood samples with fixed H = 40%; two SO2 = 
70% and 90% levels are considered; μa values at these wavelengths have been varied by ±10% 
with respect to the control (variation = 0%); μs values are altered by ±10% compared to the 
control (variation = 0%); g parameter in comparison to the control (variation = 0%) has been 
changed from -5% to 1% at each wavelength.



 

 
Table S3. Computed optical parameters for various blood samples with H = 20%, 30%, 40% and 
SO2 = 70%, 90%. The scattering anisotropy (g) factor is evaluated at 700 and 1000 nm 
wavelengths. It is varied from -5% to +1%.



Fig. S1. Representative simulated PA signals at 700 nm and 1000 nm wavelengths, for 
RBC+PBS [(A), (B), (E), (F)] and RBC+PLS [(C), (D), (G), (H)] samples. The hematocrit and 
oxygen levels are provided in the legend of each figure.

Fig. S2. The plots represent the generated spatial distribution of sensitivity to absorption at 700 
nm and 1000 nm wavelengths, for variation in absorption coefficient μa [(A)-(D)], scattering 
coefficient μs [(E)-(H)] and g [(I)-(L)]; hematocrit level is fixed to H = 40%.


