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Abstract— A theoretical framework for photoacoustic
(PA) signal simulation using a discrete particle approach
is discussed, and the tomographic image reconstruction
using such signals is reported. Various numerical phantoms
in two dimensions were constructed by inserting monodis-
perse/polydisperse solid circles/disks of uniform strength
occupying regular or random locations within the imag-
ing region. In particular, a blood vessel network phantom
was simulated by positioning solid circles mimicking red
blood cells randomly within the vessel using a Monte Carlo
method. The PA signal from a single disk was obtained
by numerically evaluating the analytical formula, and then,
such signals from many disks were summed up linearly
to generate the resultant signals at detector locations.
Classical backprojection and time-reversal algorithms were
employed to form reconstructed images. Two model-based
approaches, namely impulse response-based (IRB) and
interpolation-based (IPB) methods, were also deployed for
image reconstruction. Some standard parameters were cal-
culated to assess the performance of these reconstruction
algorithms. The simulation results demonstrate that the
Monte Carlo method can be applied in practice for the
fast simulation of tissue realization keeping microscopic
details intact, and accordingly, PA signals can be calculated
for photoacoustic tomography (PAT) imaging. Furthermore,
the IRB technique produces images with superior quality
and outperforms other algorithms.

Index Terms— Monte Carlo method, photoacoustic
tomography (PAT), radio frequency line simulation, single
particle approach.

I. INTRODUCTION

PHOTOACOUSTIC (PA) imaging is a hybrid imag-
ing modality. It exploits the advantages of optics and

acoustics [1]–[3]. The imaging region is irradiated with short
laser pulses, and subsequent acoustic signals, generated due
to thermoelastic expansion, are utilized for image formation.
Currently, it operates in two modes—PA microscopy (PAM)
and PA tomography (PAT). PAM can generate the images of
objects in the cellular and subcellular regimes with nanometer
to micrometer resolution. PAT can produce the images of
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tissue structures seating few centimeters deep. PAT tech-
nique has found applications in small animal brain imaging
[4], [5], vasculature imaging [6], breast imaging [7], [8],
sentinel lymph node imaging [9], [10], and molecular imaging
[11]–[13].

The purpose of the PAT image reconstruction is to create
an image depicting the spatial distribution of initial pressure
rise/light absorption function of the illuminated region. Sev-
eral reconstruction algorithms have been developed so far
to achieve this. Analytical approaches include backprojec-
tion (BP) algorithm [14] and time-reversal (TR) method [15].
They are, in general, fast and simple techniques. However, they
lack to provide quantitative information of the source region.
To overcome this problem, model-based approaches have
been explored. Although these methods are computationally
extensive, they are known to provide accurate quantitative
information of the source region. The model matrix (or system
matrix) can be built in various ways. For example, it can be
accomplished by loading the spatial impulse response of all
grid points inside the imaging region at all detector locations
[16]–[18]. It is referred to as the impulse response-based
(IRB) method in the remaining text. Another group relied on
polynomial-based interpolation schemes for the construction
of the model matrix [19]–[21]. Essentially, the bilinear inter-
polation procedure was realized for this purpose. This scheme
is termed as the interpolation-based (IPB) method throughout
the text.

The well-known k-Wave toolbox has been exclusively used
in PA imaging studies [15]. It numerically solves coupled
partial differential equations to examine how the PA field
evolves with time. It allows to investigate the effects of various
factors (e.g., bandwidth, aperture size, organization of the
sensors, and width of the input laser pulse) on PA image
formation [15], [22], [23]. Almost in all k-Wave implementa-
tions, the underlying assumption is that the source region (e.g.,
blood vessel) is a homogeneous medium containing freely
suspending chromophores. Therefore, the cellular aspect of
tissue has been ignored. The imaging region in the k-Wave
needs to be discretized in the nm scale (≈100 nm) if one
wants to simulate a tissue by assembling a large number of
cells and also considers each cell as a PA source. This is not
practical because in that case, computation time and memory
requirement would become unrealistically high. On the con-
trary, a theoretical model has been developed by exploiting
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the cellular aspect of blood [24]. The PA field from a single
red blood cell (RBC) [approximated as a fluid sphere (in
three dimensions)] suspended in another fluid medium can be
calculated by employing a frequency-domain approach [25].
The PA field from blood has been obtained by summing
the fields emitted by the individual RBCs. This is called the
discrete/single particle approach. This model assumes that the
light absorption takes place in the molecular level, but acoustic
emission takes place in the cellular level. Furthermore, in this
picture, hemoglobin molecules are bounded within RBCs, and
their concentration (inside a cell) and oxygen saturation states
define the amplitude of the PA field emitted by a cell. We pre-
viously applied this approach for tissue simulation (mostly
blood tissue simulation comprised of randomly distributed
RBCs) and signal calculation in order to study how blood
pathologies affect PA spectral features [26]–[30].

The objective of this article is to apply discrete particle
approach for PA signal simulation and then to perform PAT
image reconstruction using such signals. Essentially, several
numerical phantoms in two dimensions were constructed by
placing single/multiple, monodisperse/polydisperse solid cir-
cles (also referred to as disk in the text) with uniform strength
occupying regular/random locations within the imaging region.
In particular, a blood vessel network was created by randomly
inserting solid circles of radius 2.75-μm mimicking RBCs
inside the vessel. A Monte Carlo technique known as the
random sequential adsorption technique was implemented to
generate the random locations of the solid circles [31], [32].
It offers a quick method for simulating tissue configurations
preserving structural details in the cellular level. The PA
signal from a solid circle for a delta function laser pulse
was calculated by numerically evaluating the exact formula.
The resultant signals at the detector locations were computed
by linearly adding the tiny signals emitted by the individual
disks. The BP, TR, IRB, and IPB algorithms were implemented
for image reconstruction. Some standard parameters were
computed to quantitatively assess the performance of each
method. The discrete particle approach can be adapted in
practice for PA signal simulation, and the IRB technique has
been found to produce the best reconstructed images.

The organization of the rest of this article is as follows.
Section II elaborates the theoretical framework utilized for
forward signal simulation. The theoretical aspects of the BP,
TR, IRB, and IPB reconstruction methods are briefly described
in this section as well. The quantitative methods to compare
the performance of the reconstruction techniques are also
highlighted in this section. The numerical simulations are
detailed in Section III. Section IV portrays the numerical
results. Finally, the discussion and conclusions of this work
are presented in Section V.

II. FORWARD AND INVERSE PROBLEM FRAMEWORKS

A. PA Signal Calculation

The time-dependent PA wave equation under the restriction
of thermal and stress confinements is given by [25]

∇2 p(r, t) − 1

v2
s

∂2 p(r, t)

∂ t2 = − β

CP

∂ H (r, t)

∂ t
(1)

where β, CP , vs , and H are the isobaric thermal expansion
coefficient, specific heat, speed of sound within the source
region, and heat delivered by the incident laser beam to the
sample per unit time and volume, respectively. The solution
to (1) in the frequency domain for a homogeneous infinite
circular cylinder surrounded by a fluid medium after satisfying
the continuity of pressure and normal component of particle
velocity at the boundary becomes [25]

p̃ f (q̂) = iμβ I0vsa

Cp

[
J1(q̂)H (1)

0 (ĉr̂ q̂)

q̂
[
J1(q̂)H (1)

0 (ĉq̂) − ρ̂ĉ J0(q̂)H (1)
1 (ĉq̂)

]
]

(2)

where μ and a are the light absorption coefficient and radius
of the source, respectively; I0 and ω denote intensity and
modulation frequency of the exciting laser beam, respectively;
J0 and J1 indicate the Bessel function of zeroth and first
orders, respectively; and similarly, H (1)

0 and H (1)
1 refer to the

Hankel function of first kind of the same orders, respectively.
The notations ρs , ρ f , and v f state the density of the source,
density, and speed of sound of the surrounding medium,
respectively. The dimensionless quantities can be defined as,
q̂ = (ωa/vs), ρ̂ = (ρs/ρ f ), ĉ = (vs/v f ), r̂ = (r0/a). Here, r0
is the distance of the detector (i.e., field point) from the center
of the source. The subscripts s and f represent the source
and fluid medium, respectively. Note that (2) is a function of
r0 only (independent of the z coordinate of the field point).
Therefore, 3-D problem essentially reduces to a 2-D problem,
and consequently, (2) can be used to estimate the PA field
produced by a solid circle. The time-dependent pressure by
a solid circle in the surrounding fluid medium for a delta
function input laser pulse in the far-field region (r0 � a) can
be expressed as [25]

p(1)
f (r0, t) ≈ iμβvsa F

2πCp
×

√
2v f

πr0
×

∫ ∞

−∞
dω

× ω− 1
2 J1(q̂)ei

(
k f r0− π

4

)
e−iωt

q̂
[
J1(q̂)H (1)

0 (ĉq̂) − ρ̂ĉ J0(q̂)H (1)
1 (ĉq̂)

] , (3)

with F as the fluence of the heating pulse, k f is the wavenum-
ber, and the superscript (1) of p f states that signal is generated
by a single particle.

The PA signal in the asymptotic region for a many particle
system can be expressed as a linear superposition of signals
emitted by the individual disks as

p(N)
f (r0, t) ≈ iμβvs F

2πCp
×

√
2v f

πr0

×
∫ ∞

−∞
dω

N∑
n=1

anω
− 1

2 J1(q̂n) × 1

q̂n

× ei
(

k f r0− π
4 −ωt

)
e−ik f ·rn[

J1(q̂n)H (1)
0 (ĉq̂n) − ρ̂ĉ J0(q̂n)H (1)

1 (ĉq̂n)
]
(4)

where rn and an are the position vector and radius of the
nth disk, and k f defines the direction of measurement with
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Fig. 1. Representative diagram of the simulation geometry.

q̂n = (ωan/vs). The superscript (N) indicates that the illu-
minated region contains N number of disks. A representative
diagram is shown in Fig. 1. This is called the discrete particle
approach, where the resultant PA signal is simulated by adding
the tiny signals produced by the individual particles. Equa-
tions (3) and (4) provide signals with infinite bandwidth. The
corresponding bandlimited (measured) signal can be generated
using a cosine Gabor filter as [27]

p(r0, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Re
(

p(1)
f (r0, t)

) ∗ σe− σ2t2
2√

2π
cos(2π f0t)

Re
(

p(N)
f (r0, t)

) ∗ σe− σ2t2
2√

2π
cos(2π f0t)

(5)

where ∗ denotes the convolution operation, Re indicates real
part of the signal, f0 is the center frequency, and σ is related
to the −6-dB bandwidth of the transducer. In this work, (5)
has been computed to yield bandlimited PA signal generated
by a single disk or an ensemble of disks at a detector location.

B. Image Reconstruction

The heating function can be expressed as H (r, t) =
A(r)δ(t) with A(r) as the spatial light absorption function, and
δ(t) is the Dirac delta function. Therefore, (1) becomes [1]

∇2 p(r, t) − 1

v2
s

∂2 p(r, t)

∂ t2 = − p0(r)
v2

s

dδ(t)

dt
(6)

where p0(r) = 	A(r) = 	μ(r)F is the initial pressure rise
due to light absorption with 	 = v2

s β/CP as the Grüneisen
parameter, which is taken as constant throughout the imaging
region. The purpose of the PAT imaging is to produce a spatial
map of p0(r) or A(r) using pressure data p(r0, t) measured
at r0.

1) Analytical Approach: The rigorous reconstruction formu-
las for planar, cylindrical, and spherical recording surfaces are
deduced in [33]. However, these expressions contain Fourier
integrations or series summations and are generally incon-
venient for implementation. A relatively simple time-domain
reconstruction formula known as the universal BP formula
has been derived by the same group for the above-mentioned
detector geometries [14]. The PA pressure predicted by the BP
algorithm is given by [14]

pb
0(r) =

∫

0

b

(
r0, t = |r − r0|

v f

)
d
0/
0 (7)

where

b(r0, t) = 2 p(r0, t) − 2t
∂p(r0, t)

∂ t
(8)

is the BP term, and d
0 is the solid angle subtended by the
detector element at the reconstruction point r; 
0 is the total
solid angle subtended by the whole detector setup.

Another popular approach is the TR method. In this case,
the PA wave equation is solved with the appropriate initial and
boundary conditions to estimate actual pressure distribution at
t = 0. The numerical values of pressure are taken as zeros
at all field points, and the measured data provide boundary
values. This method works well if the density and speed of
sound of the imaging region remain spatially invariant.

2) Model-Based Approach: In this approach, PAT image
reconstruction is expressed as a system of linear equations
as [16]

�z = p, � ∈ R
m×l , z ∈ R

l, p ∈ R
m (9)

where � is the model matrix (or system matrix), z is the
unknown representing spatial map of initial pressure rise/light
absorption function, and p is a long column vector constructed
by stacking measured pressure data.

In general, the model matrix depends on the speed of
sound of the medium, geometry of the PAT system, and
properties of the individual detectors (e.g., frequency response
and sensitivity profile of the receiving aperture). It is a large
matrix, and in general, it is not a square matrix rendering it to
be noninvertible. Because of this, it is not possible to obtain
a direct solution of z. One of the methods is to demand the
least square error as [16]

zsol = argmin 	�z − p	2
2 (10)

where 	.	2 denotes l2 norm. Another approach is to employ
the Moore–Penrose pseudo inverse

zsol = �† p (11)

where �† = (�T �)−1�T with T is the transpose operation of
a matrix. Note that the left inverse exists if m > l. These two
methods work faithfully for full view data set (i.e., when data
acquisition takes place over 360◦ around the imaging region
in two dimensions) facilitating a large number of projections.
For limited view data set, it is better to use the Tikhonov
regularization scheme to yield an accurate estimate, and it is
accomplished by minimizing the following cost function [16]:

� = 	�z − p	2
2 + λ2	Lz	2

2 (12)

where λ is referred to as the regularization parameter, and L
is a derivative operator. Smoothness of the solution depends
on these two parameters. The L matrix can be built using a
spatial normalized Laplacian filter with a kernel (KL) [20]

KL = 1

9

⎛
⎝−1 −1 −1

−1 8 −1
−1 −1 −1

⎞
⎠. (13)

In this work, zsol has been obtained by minimizing � as given
in (12), whereas two different methods have been implemented
for generating the � matrix.
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Fig. 2. Demonstration of the numerical phantoms. (a) Disk phantom. (b)
Multiple disks phantom. (c) Derenzo phantom. (d) Vasculature phantom.

III. NUMERICAL SIMULATION

A. Phantom Construction

Four numerical binary phantoms were constructed to
compare the performance of the reconstruction techniques.
These phantoms are single disk, polydisperse multiple disks,
Derenzo phantom, and a blood vessel network as shown in
Fig. 2(a)–(d), respectively. A uniform disk with a radius
of 5 mm was located at the center of the imaging region in the
first phantom. Five different disks with radii 0.4, 0.8, 1.2, 2.0,
and 3.5 mm were positioned arbitrarily within the illuminated
region in the second phantom. The coordinates of the centers
of the disks were stored. Six different sets of disks (with radii
0.25, 0.30, 0.8, 1.0, 1.2, and 1.5 mm) were placed in the third
phantom occupying a triangular region by each group as shown
in Fig. 2(c). In this case, also, position coordinates of each disk
were recorded.

The fourth phantom was constructed in the following
manner. A binary image of a blood vessel network of
18 × 18 mm2 size was scanned at 600 dots per inch
(≈42.3 μm as the grid spacing). Therefore, the image matrix
contained 425 × 425 pixels. A value of 1 was tagged to the
grid points inside the network; otherwise, 0 was assigned.
The number of grid points inside the phantom was computed
to obtain the area occupied by the blood vessel network.
It occupied ≈35.3 mm2 out of 324 mm2. A total number
of 594 275 disks with radius 2.75-μm, mimicking RBCs, were
thrown randomly into the region inside the vessel. Hence,
the hematocrit level was calculated to be 0.4. A Monte Carlo
algorithm known as the sequential adsorption technique was
applied to generate the random locations of RBCs [31], [32].
In this approach, a random position for a RBC was proposed
and was accepted if it did not overlap with cells that were
already positioned. If it did not satisfy the nonoverlapping
condition, a new position was proposed.

To develop an efficient computer program, the imaging
region was divided into 425 rectangular strips (along the
x-axis) each of size 42.3×18 000 μm2. We began positioning
of cells from the extreme left and moved to the right grad-
ually. Now consider a strip. Cells were placed sequentially
within the branch/branches of the phantom inside that strip.

Nonoverlapping condition with cells (already positioned)
inside that strip as well as those inside the previous (neigh-
boring) strip was tested before placing a cell. Therefore,
the possibility of overlapping of cells at the boundary was
removed. This approach reduced execution time significantly
because nonoverlapping condition was checked for a small
number of cells (only those inside these two strips). After
that, cells were placed in the next strip. This scheme was
implemented previously by us for the simulation of blood
tissue realizations in three dimensions [27]. It may be noted
that RBCs could also be randomly thrown inside the entire
vessel. However, in that case, nonoverlapping condition with
all existing cells (occupying valid locations) would need to be
examined. It is a computationally extensive task. Furthermore,
execution time would grow nonlinearly since the number of
cells to be considered would grow with iteration. Plots of the
coordinates of RBCs generated using the Monte Carlo tech-
nique are shown in Fig. 2(d), which mimicked the structure of
the source well. Furthermore, the spatial organization of cells
of a small portion within the red box is shown in the inset to
demonstrate the microscopic nature of the vessel. A MATLAB
code was written for this purpose, and it took ≈105 s in a
virtual machine to generate the random locations of RBCs
(RAM: 256 GB, cores: 80, clock speed: 2.19 GHz, processor:
Intel Core (Skylake, IBRS), OS: CentOS).

B. Signal Calculation

The density and speed of sound of the surrounding medium
were chosen as ρ f = 1000 kg/m3 and v f = 1500 m/s,
respectively. The numerical values of these parameters for the
source region were considered to be the same. In addition,
the thermomechanical parameters for the source region were
taken as I0 = 1, β = 1, CP = 1, and μ = 1 as these
parameters only control the amplitude of the PA signal and
do not influence spectral properties [24]. The PA signal was
calculated at a distance of 5 cm from the center of the imaging
region (see Fig. 3) from t = 0 to 50 μs using a sampling
frequency of 2000 MHz (�t = 0.5 ns). The contributing
frequencies were varied from 1 kHz to 1000 MHz with an
increment of 10 kHz. The numerical integration in (3) or (4)
was carried out using the trapezoidal rule. The initial data
length at a detector location was 100 000. Such a signal was
filtered employing (5) when f0 = 2.25 MHz and 70% as the
−6-dB bandwidth and, subsequently, down sampled 40 times
(using the decimate function of MATLAB), providing a final
data length of 2500 and �t = 20 ns. A 40-dB noise level was
added with the numerically generated signal. This procedure
was followed to compute the PA signals at 100 detector
locations uniformly distributed within an angular range of
0–2π for each phantom. The discrete particle approach took
approximately 250 s to generate the PA signals for 100 detec-
tor locations. The simulated signals were used for image
reconstruction.

C. Image Generation

Image reconstruction was performed for a region of 18 ×
18 mm2 with respect to the scanning center, and this region
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Fig. 3. Graphical illustration of the reconstruction algorithms. (a) BP.
(b) IRB. (c) IPB.

was divided into 181 × 181 grid points. The grid spacing
became dx = dy = 100 μm. After that, the BP term as
given in (8) was computed for each detector, and subse-
quently, (7) was evaluated for all detectors for each grid point.
A schematic is shown in Fig. 3(a). It might be mentioned
here that we did not include any angle-dependent factor for
each detector at each gird point while calculating d
0 since
we considered point detectors, and also, we took 
0 = 2π
as image reconstruction was performed in two dimensions.
The reconstructed images for the TR technique were formed
deploying the pertinent function of the k-Wave toolbox [15].

For the IRB algorithm, � matrix was constructed by adapt-
ing the method described in [16]. The PA signal from a disk
with 50-μm radius, placed at a corner grid point as shown in
Fig. 3(b), was calculated at the location of the first detector.
This signal was treated as the reference signal and could also
be thought of as the spatial impulse response for the first
detector for the top leftmost corner pixel. This signal was
loaded into the � matrix (first column, rows from 1 to 2500).
The signals from all other grid points (by traversing column
wise starting from the top row, second leftmost corner) to the
first detector were generated by properly scaling and shifting
of the reference PA signal. Accordingly, all the columns from
2 to 32 761 and rows from 1 to 2500 of the � matrix were
filled up. Similarly, the PA signals were calculated for all grid
points traveling in the identical manner for the second detector
and copied in the � matrix (rows from 2501 to 5000 and
columns from 1 to 32 761). This procedure was followed for
the remaining 98 detectors. The size of the � matrix was
250 000 × 32 761 (≈ 61 GB). The PA signals simulated at
100 detector locations for a numerical phantom as described
above were stacked columnwise to form the p matrix, whose
size was 250 000 × 1.

As the size of the � matrix became very large, we did
not consider 2500 data points in each signal rather we took
941 data points (array locations from 1200 to 2140) providing
m×l = 94 100×32 761. The same length was also considered
while filling the p matrix. This approach significantly reduced

the size of the � matrix (≈23 GB) viz-a-viz computation time.
This step did not affect the results because we discarded many
zeros (or noise) from both sides. The size of the L matrix
could be computed to be l2 × l2 = 32 761 × 32 761 (≈8 GB).
The singular value decomposition of the � matrix was accom-
plished, and accordingly, optimal regularization parameter (λ)
was obtained. This parameter was utilized to perform the
Tikhonov regularization for yielding a good estimate of z_sol.
The last three steps were realized using cgsvd, l_curve, and
Tikhonov functions of MATLAB-based regularization toolbox
[34]. The singular value decomposition took around 1 h 30 min
to complete, and after that, image reconstruction was finished
within nearly 40 s in the same machine for each phantom.

The details of the IPB reconstruction technique can be found
in [20]. Essentially, the solution of (6) in two dimensions can
be given by the Poisson-type integral as [20]

p(r0, t) = 1

4πv f

∂

∂ t

∫
τ (t)

p0(r)
|r0 − r|dτ (t)

= 	

4πv f

∂

∂ t

∫
τ (t)

A(r)
|r0 − r|dτ (t) (14)

where τ (t) is the arc length within the illuminated region, for
which |r0 − r| = v f t . Equation (14) states that signals from
the points lying on this arc add up coherently at r0 as shown in
Fig. 3(c), and the time derivative of the resultant signal gives
rise to the PA pressure at that point. Equation (14) can be
further decomposed as [20]

p(r0, t) ≈ Iabs(t + �t) − Iabs(t − �t)

2�t
(15)

with

Iabs(t) =
∫

τ (t)

p0(r)
|r0 − r|dτ (t). (16)

It is evident from (15) that points on the two arcs indeed
participate in producing the PA pressure at r0 at time t . For
the former arc, |r0 − r| = v f (t +�t), and it is v f (t −�t) for
the later arc.

The forward modeling approach can be used to solve the
inverse problem. It means that the PA pressure on the points
lying on these two arcs can be found from the measured
pressure at r0 at time t . Furthermore, the PA pressure on the
neighboring grid crossings for each point on the arc can be
estimated using interpolation technique. In this work, bilinear
interpolation has been implemented for this purpose. The
schematic is shown in Fig. 3(c). Essentially, the minimum
angular region (i.e., α) that was required to entirely enclose
the imaging region (considering all detectors) was calculated.
This angular region was divided into 200 subangles. Therefore,
201 equidistant points (including the starting point) on the arc
were considered. The PA pressure at a point (x, y) is related
to the pressure at the four points (denoted by z1, z2, z3 and z4)
as [20]

z(x, y) = (1 − �x1)(1 − �y1)z1 + �x1(1 − �y1)z2

+ �x1�y1z3 + (1 − �x1)�y1z4 (17)

where �x1 = (x − x1)/dx , and �y1 = (y − y1)/dy. In this
way, pressure at all the grid crossings bounding the points on
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the arc can be determined. This procedure can be repeated for
all arcs, which, in general, can be written in a matrix form
as [20]

p(r0, t j ) =
∑

l

W jl zl (18)

where pressure is calculated at t j th instant, W jl is the corre-
sponding coefficient, and l indicates the grid number (it is
made by traversing columnwise starting from the top row,
leftmost corner as described above). In this work, the model
matrix � was built by choosing appropriate W jl for each
grid crossing. It might be mentioned here that the coefficients
became positive for the grid crossings, enclosing points on the
arc for which |r0 − r| = v f (t j + �t). However, coefficients
for the grid crossings corresponding to the other arc for which
|r0 − r| = v f (t j − �t) were negative. The coefficients were
considered to be zero for grid crossings which did not bound
the arcs. This procedure was followed for all detectors.

D. Analysis of Performance of the
Reconstruction Methods

The next step was to compute various parameters for the
quantitative estimation of the performance of the reconstruc-
tion methods. These are the standard parameters and have
also been used in the other works. The parameters are briefly
summarized here.

1) Error Norm (ERN): The ERN is defined as [18]

ERN = 	z − zsol	2 (19)

where z and zsol are the nominal and estimated values,
respectively. ERN becomes zero for perfect reconstruction.

2) Pearson Correlation Coefficient (PCC): The PCC can
quantify the similarity between two images and is given
by [18]

PCC = COV(z, zsol)

σzσzsol

(20)

where COV denotes the covariance between two matrices, σz

is the standard deviation of the original image, and σzsol is
that of the reconstructed image. Its numerical value varies from
−1 to 1. Higher the value of PCC, better is the reconstruction.

3) Contrast to Noise Ratio (CNR): The CNR is a parameter
that can be used to quantify how good a reconstructed image
is compared to the original image. It is expressed as [18]

CNR = ηroi − ηback(
σ 2

roinroi + σ 2
backnback

) 1
2

(21)

where η is the mean and σ is the standard deviation; the
subscripts “roi” and “back” refer to the region of interest and
background in the reconstructed image; nroi = Aroi/Atotal and
nback = Aback/Atotal with Atotal as the total number of pixels
in the original/reconstructed image, Aroi is the total number of
pixels in the original image with p0 �= 0, and Aback is the total
number of pixels in the original image with p0 = 0. The “roi”
becomes easily distinguishable with respect to the “back” if
CNR is large. In this work, 48 pixels were chosen in the “roi”
to calculate its η and σ , whereas 169 pixels were considered
in the “back” to determine the same parameters.

4) Signal to Noise Ratio (SNR): The SNR can be computed
as

SNR = 20 log 10

(
M

σback

)
(22)

where M is the peak pressure of the “roi.”

E. Simulation Using k-Wave Toolbox

To validate the results presented in this work, we also
performed simulations using the k-Wave toolbox [15]. The
computational grid size was taken as 1101 × 1101 with
dx = dy = 100 μm. The width of the perfectly matched
layer was ten grid points. The PA signals were calculated
at a distance of 5 cm from the imaging/scanning center at
100 detector locations. The length of the time series data
for each detector was 2500 with �t = 20 ns. Accordingly,
the Courant–Friedrichs–Lewy number (c�t/dx) became 0.3.
The same numerical phantoms were loaded sequentially in the
k-Wave toolbox, and the forward data were generated. Each
forward simulation took approximately 13 min to run. After
that, the reconstruction formulas mentioned above were used
exactly following the same steps for image formation.

IV. NUMERICAL RESULTS

The reconstructed images generated by the BP, TR, IRB,
and IPB algorithms are shown in Fig. 4 when forward data
have been generated by the single particle approach. The
corresponding image profiles along the cyan lines as drawn in
the BP images are shown in the last column of this figure as
well. Each image is normalized by its maximum pressure
value. It can be seen from Fig. 4 that the source regions are
reproduced well by the reconstruction methods considered in
this study. It is clear from Fig. 4(a)–(e) that a solid circle is
converted to a blurred circle due to reconstruction. It occurs
because bandlimited signals have been employed for image
reconstruction. Fig. 4(b) exhibits that prominent streak artifact
build up in the TR reconstruction, but it is relatively small in
the other images [Fig. 4(a), (c), and (d)]. This artifact may
become negligible with an increasing number of projections.
The pressure at the boundary is faithfully estimated in all
reconstructed images [see Fig. 4(e)]. However, the same quan-
tity inside the disk is best determined by the IRB algorithm
[see the purple line in Fig. 4(e)]. The prediction made by the
TR method is also close to that the of IRB scheme at least at
the central region as apparent from Fig. 4(e) (green line). The
PA pressure inside the source for the BP and IPB techniques is
predicted to be very small, and it is far away from the nominal
value (red and blue lines with respect to the black line).

Fig. 4(f)–(i) and (k)–(n) shows the reconstructed images
of a series of solid disks with different radii. As observed
in the previous case, IRB provides the best spatial map of
initial pressure distribution for all disks. The images gen-
erated by the other three methods look almost comparable.
Furthermore, in these algorithms, initial pressure rise inside
small objects (with radius 0.4 mm in the second row and
radius 0.3 mm in the third row) is reproduced with the highest
accuracy, whereas deviations with respect to the ground truths
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Fig. 4. Reconstructed images of the numerical phantoms considered in this study using the PA signals generated by the single particle approach.
Simulated images formed by the BP, TR, IRB, and IPB algorithms of the single disk phantom shown in (a)–(d), respectively. (e) Line plots [pixel
values along the cyan line as shown in (a)] for these images. (f)–(j) Same as (a)–(e) but for the multiple disks phantom. (k)–(o) Same as (a)–(e) but
for the Derenzo phantom. (p)–(t) Same as (a)–(e) but for the vasculature phantom. Quantitative analysis has been performed based on the indicated
roi (pixels inside the green box) and background (pixels inside the red box) regions.

are noticeable for large disks. This can be clearly noticed
in Fig. 4(j) and (o). Moreover, the shapes of the smallest
objects with a radius of 0.25 mm are retained well in the
reconstructed images [Fig. 4(k)–(n)], but the estimated PA
pressure distribution within this group of disks is less than
the nominal value and also prediction is inferior compared to
that of the other set with radius 0.3 mm [see Fig. 4(o)]. All
the reconstruction algorithms facilitate similar pressure maps
inside the source for the vasculature phantom as evident from
Fig. 4(p)–(s) and more precisely from Fig. 4(t). However,
background noise has been greatly suppressed in the IRB
reconstruction.

The performance of the reconstruction techniques has been
assessed quantitatively in this work and shown in Table I. The
numerical values of the local parameters (CNR and SNR) for
the source have been computed from the region enclosed by
the green box, and the pixels within the red box are considered
as background region (see the first column of Fig. 4). The
numerical values of various parameters (rows 2–5, column 3)
confirm that the BP algorithm is the least effective among all
for the disk and multiple disk phantoms. The TR algorithm has
a slight edge over the IPB technique if we consider the first
phantom (compare columns 4 and 6 and rows from 2 to 5).
However, they become comparable for the second phantom
(compare columns 4 and 6 and rows from 6 to 9). Computed
numerical values fluctuate for the third phantom in these three

TABLE I
QUANTITATIVE COMPARISON OF PERFORMANCE OF DIFFERENT

RECONSTRUCTION METHODS FOR PA SIGNALS GENERATED

BY THE SINGLE PARTICLE APPROACH

reconstruction methods (as given in columns 3, 4, and 6 and
rows from 10 to 13), and hence, a comparison is not trivial.
In the case of vasculature phantom, TR performs better than
the BP and IPB techniques. For instance, PCC for TR is equal
to 0.57 and is greater than that of BP (0.30) and IPB (0.31).
The estimated parameters (column 5) confirm that the IRB
protocol provides much superior reconstruction than those of
the other methods. This is in accordance with Fig. 4.
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Fig. 5. Simulated images of the numerical phantoms considered in this study (k-Wave toolbox utilized to compute the PA signals). (a), (f), (k), and
(p) BP method. (b), (g), (l), and (q) TR method. (c), (h), (m), and (r) IRB method. (d), (i), (n), and (s) IPB methods. (e), (j), (o), and (t) Line plots (pixel
values along the cyan lines in the BP images). The roi and background regions are marked by green and red boxes, respectively.

TABLE II
QUANTITATIVE ASSESSMENT OF PERFORMANCE OF THE

RECONSTRUCTION TECHNIQUES FOR PA SIGNALS

COMPUTED BY THE K-WAVE TOOLBOX

To validate the results presented here based on the PA
signals generated by the discrete particle approach, we also
conducted simulations using the k-Wave toolbox. The normal-
ized reconstructed images are shown in Fig. 5 for different
phantoms considered in this study. The reconstructed images
are generally agree well with those of Fig. 4, and analogous

observations can be made. The image profile along the given
lines also appears visually similar to those of the previous
figure (see fifth columns of Figs. 4 and 5). However, the initial
pressure for large objects and the k-Wave method decreases as
we move from edge to the center, whereas it remains almost
constant for the former approach [compare purple lines in
Figs. 4(e) and 5(e)]. This difference diminishes as the object
size decreases. This small discrepancy arises due to the fact
that bandpass filters may be different in the two methods. The
numerical values of the parameters for evaluating the perfor-
mance of the image formation methods via k-Wave scheme are
shown in Table II. The numerical values are, in general, agree
well with those of Table I and thus standardises the discrete
particle approach.

V. DISCUSSION AND CONCLUSION

In this work, phantoms have been created by placing
acoustically homogeneous (compared to the ambient medium)
monodisperse/polydisperse disks regularly or randomly within
the imaging region. The PA signal emitted by a disk when
illuminated by a delta function laser pulse can be calculated
analytically. Therefore, PA signals from the individual disks at
a detector location can be computed, and such signals may be
added using the linear superposition principle to generate the
resultant signal. These resultant signals computed at various
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detector positions have been used for image reconstruction.
This approach allows the handling of each cell individually.
Therefore, contributions from different cells, with size disper-
sity and acoustic impedance heterogeneity, can be incorpo-
rated within the resultant signal. Note that the single particle
approach took ≈6 min (105 s for the creation of vasculature
phantom and 250 s for signal calculation for 100 detector
locations) to execute. We found that time complexity for tissue
simulation in this approach increased nonlinearly with the
number of cells. For example, computation time increased
about 1.8 and 4.2 times with the rise of number of particles
from 18 571 to 37 142 and 297 138 to 594 275, respectively.
The space complexity did not vary significantly over the entire
range of number of particles tested (18 571–594 275). The
single particle approach in conjunction with the Monte Carlo
method can be realized in practice for PA signal simulation
for tissue while keeping microscopic details intact.

The computation time of the k-Wave method was nearly
13 min though it modeled the PA source as a bulk medium.
As discussed earlier, if tissue simulation is accomplished by
placing individual cells within the blood vessel, subsequent PA
signal computation would encounter enormously high time and
space complexity in the k-Wave. The time complexity indeed
increases nonlinearly with size of the computational domain.
For instance, execution time increased from approximately
5 to 10 s when grid size was varied from 64 × 64 to
128 × 128. However, the same quantity changed from nearly
8 to 74 min when grid size was varied from 1024 × 1024
to 2048 × 2048. The space requirement remained almost
constant even when the grid size was varied over a large span
from 64 × 64 to 2048 × 2048. The time and space complexity
will further increase for 3D systems, and hence, the inclusion
of microscopic details of tissue is not feasible in k-Wave
simulation.

A Monte Carlo technique known as the sequential adsorp-
tion technique has been applied in this work to simulate a real-
ization of a tissue sample. In this technique, location of a cell,
if it is generated by a valid throw (i.e., satisfies nonoverlapping
condition), becomes fixed. Therefore, it does not allow minor
adjustment of positions of cells. As a result of that, tissue
simulation may become difficult using this method particularly
for dense medium (e.g., at 50% hematocrit). Another technique
known as the Metropolis algorithm may be implemented for
generating the random locations of RBCs [35], [36]. In this
method, the positions of RBCs are updated continuously so
that the tissue realization attains minimum energy state. This
approach may be adapted to simulate dense tissue.

The individual PA source in this work has been assumed
to be a uniform disk. This assumption is not always true.
For example, the shape of normal RBC is biconcave, and the
impact of shape may become visible at very high frequen-
cies (hundreds of MHz). Closed-form expression for the PA
signal for such a shape does not exist. Furthermore, the PA
signal would become angle dependent (orientation dependent).
Orientation-dependent PA signals from a normal RBC can
be evaluated using Green’s function approach when acoustic
impedance mismatch is small. Nevertheless, tissue simulation
considering the biconcave shape of RBCs would be nontrivial.

The BP algorithm is simple and fast but delivers the
qualitative information of the imaging region only as pointed
out earlier. The same is also true for the TR technique
to some extent. The IRB algorithm seems to be the best
algorithm among all. It can capture various properties of the
imaging region (speed of sound) and detectors (geometry, size,
frequency response, and sensitivity of profile of the aperture)
while building the system matrix and thus provides faithful
reconstruction. However, it may not produce good images for
acoustically inhomogeneous imaging region. The sensors in
the IPB algorithm are essentially treated as point detectors
and, hence, may fail to generate accurate reconstruction for
finite-size detectors. Moreover, in this method, pressure at
a point depends on its strengths at the neighboring grid
crossings. Therefore, grid crossings outside the source with
p0 = 0 also contribute to the estimation of p0 inside the
source, leading to the reduction of actual pressure within the
source (see fourth columns of Figs. 4 and 5).

It may be noted that the standard form of (12)
(i.e., L being the identity matrix) has been extensively used
for PAT image reconstruction. However, a spatial normalized
Laplacian filter has been considered herein while performing
the Tikhonov regularization. We observed that slightly better
image reconstruction, in general, can be achieved utilizing
this approach. Furthermore, in this work, we have restricted
ourselves to the bilinear interpolation only. However, other
polynomial-based interpolation schemes also exist in the liter-
ature (namely, nearest neighbor, bicubic, biquintic, and so on)
[37]. These methods have been extensively used by the image
processing community. A separate investigation is required to
study the performance of these interpolation techniques in PAT
image reconstruction.

In conclusion, numerical phantoms were generated by
inserting monodisperse/polydisperse disks of constant strength
occupying regular or random locations within the imaging
region. The PA signal from a single disk was calculated
analytically, and then, such signals from many disks were
summed up linearly to generate the resultant signal at a
detector location. This step was repeated for all detector
positions. The simulated signals were utilized to perform
image reconstruction. Classical BP and TR techniques were
implemented for image formation. Furthermore, model-based
methods referred to as the IRB and IPB algorithms were also
employed. Some standard parameters were computed to quan-
tify the performance of each protocol. The discrete particle
method facilitates the rapid computation of PA signals while
retaining structural details of tissue in the microscopic level,
and the IRB method emerges out to be the best reconstruction
algorithm.
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