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Abstract
Frequency dependent differential photoacoustic cross-section (DPACS) over a large frequency band
(100–1000MHz)has been computed and subsequently,morphological parameters of photoacoustic
(PA) source have been quantified. Green’s functionmethod has been employed for computing the
DPACS for a series of ellipsoidal droplets (with varying aspect ratio), Chebyshev particles (with
different waviness (n) and deformation (ò) parameters), healthy red blood cell (RBC) and cells
suffering fromhereditary disorders (spherocytosis, elliptocytosis and stomatocytosis). The tri-axial
ellipsoid form factor (TAEFF),finite cylinder form factor (CFF) and toroid form factor (TFF)models
have been used tofit theDPACS spectrum to obtain size and shape information of the PA source. The
TAEFFmodel estimates the shape parameters of the ellipsoidal droplets accurately (error< 5%). It is
found that volume estimation is better (error< 10%) for lower order (n= 2, ò=± 0.25) and very
higher order (n= 35, 45, ò=± 0.05)Chebyshev particles compared to those of n= 4, 6 and
ò=± 0.25. The TAEFFmodel predicts shape parameters of stomatocyte with volume error≈15%but
it is�6% for other cells. The opposite trend is observed for the CFFmodel. TheTFFmodel is able to
estimate the shape parameters efficiently for normal erythrocyte and stomatocyte but gives relatively
large errors (>15%) for other deformedRBCs. The inverse problem frameworkmaymotivate to
develop a PA-based technology to assess single cellmorphology.

1. Introduction

Photoacoustic (PA) effect depends on the principle of thermal expansion and contraction.When a pulsed laser
beam comes in contact with the light absorbing particles suspended in afluidic system a definite amount of
energy is devolved to the cell/tissue in the formof heat. The heating effect increases the temperature of the
particles andmakes them expand. On the other hand, removal of the laser radiation lowers down the
temperature of the particles and they contract.When the phenomenon of expansion and contraction is done in a
fast-enoughmanner, cell/tissuewill produce pressure waves that can eventually be received by a detector [1–3].
The characteristics of the PA signals depend upon various key parameters of the cell/tissue. In otherwords,
physical/morphological properties of the source can be quantified by analyzing the PA signals. For example, a
PA tomography image, formed utilizing themeasured PA signals, can accurately display spatial distribution of
various tissue parameters (e.g., hemoglobin concentration, oxygen saturation level etc.) [4, 5]. PA tomography
has found important applications ranging frombrain imaging, vasculature imaging, breast imaging, sentinel
lymphnode imaging andmolecular imaging [4, 5].

Numerous researchers have effectively recorded thePA signals fromsingle cells. ThePA signalswere
successfully capturedbyGalaza et al fromsickled cells, circulatory tumor cells andmalaria infected cells in blood
stream in vivo [1–3]. They employeddiagnostic ultrasounddetectors (≈3.5 to 20MHz) for this purpose. Strohm
et al, deployedultra-high frequency transducers (fewhundredMHz toGHz) tomeasure the PA signals fromnormal
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anddefective red blood cells (RBCs) [6, 7]. Thenucleus to cytoplasmic ratio of cancer cells has also been calculated
by analyzing themeasuredPA signals [8]. The quantitative estimationof this parameter can aid in assessing cell
malignancy. They demonstrated that PA spectral features above 100MHzdependupon the shape and size
parameters of the light absorbing cells [6, 7]. Thefinal goal of these researchworks is to developPAflowcytometry
technology for in vivo characterizationof deformedRBCs in blood vessel to detect andfight lethal disorders.

Normal erythrocytes are incredibly deformable and stable which empower them to go through vessels and
perform standard physiological activities [9]. An erythrocyte does not have any core and shows up as a biconcave
plate. This specific shape provides large surface-to-volume proportion (i.e., S/V)which helps RBCs to function
effectively. Hereditary issues, irresistible illness, infections and change in blood chemistry can induce change in
shape of erythrocyte and also hinder its capacity to twist and deform [10]. The irreversible deformation in the
morphology of RBCs blocks blood flow causing tissue necrosis [6]. Aside fromabove ailments, there are a few
genetic issues for which erythrocytes cannotmaintain the discocyte shape [11]. The examples include hereditary
spherocytosis, elliptocytosis and stomatocytosis [9, 11, 12]. Representative plots of these cells are displayed in
figure 1 (left panel). Itmay bementioned here that for theCaucasian race, one out of 2000 population is
experiencing genetic spherocytosis and elliptocytosis illnesses. In these cases, the cohesion between the lipid
bilayer and cytoskeleton is reduced by the film proteins or clearness of cytoskeleton. As a result of that surface to
volume ratio (S/V) decreases and it also induces permanentmorphological changes [9]. Diseased RBCs are
perceived as ailing cells by the spleen and hence, are pull out from the circulation directing to the hemolytic
anemia. Note that spleen is the secondary immune organ of the human body. Light-scattering or electrical
impedance techniques have been extensively used to determine the RBC concentration andmean corpuscular
volume [13–15]. Blood smearmicroscopic examination, ektacytometry, and cytology techniques can also detect
hemolytic anemia, by differentiating themorphology of the erythrocytes. Thesemethods are difficult and time
taking.Moreover,moderate spherocytosis or elliptocytosis are hard to detect by the cytology technique and
arduous too. The PA techniquemay be evolved as a suitablemethodwithout having these drawbacks.

We have examined in detail howdifferential PA cross-section (DPACS) varywith the shape and size of a
source [16–19]. TheDPACS is defined as the acoustic power received by a detector situated in the farfieldwith
respect to the source per unit solid angle divided by the intensity of the incident light beam.TheGreen’s function
method has been applied to compute the pressure field generated by a cell/particle of use and subsequently,
DPACS has been estimated. This quantity can be contrastedwith the differential scattering cross-sectionwhich
has been examined extensively in numerous fields to characterize the scatterering center.We investigated how
the PA spectrum vary for a number of particles (i.e., spheroidal droplets with different aspect ratio (AR),
Chebyshev particles with different deformation (ò) andwaviness (n) parameters, healthy and diseased RBCs
[16]. The angular distribution ofDPACS at 390MHzwas studied for cells. Such curves were then fitted using the
tri-axial ellipsoid form factor (TAEFF) and cylinder form factor (CFF)models to accomplishmorphological
characterization of these particles [17, 18]. Recently, a robust theoretical framework accounting various realistic
factors is presented by us [19]. It considers that the PA signals are captured by a finite size ultrasonic transducer
and themedium from source to the detector is acoustically dispersive and lossy. Encouraging results have been
obtained. The PAfield emitted by a source having nonvanishing acoustic impedancemismatch (compared to
the surroundingmedium) has also been computed via the Born series techniques [20, 21]. It was observed that

Figure 1. 3Dplots of normal RBC (first particle, top row, left panel) and diseased cells (second particle, top row, left panel; bottom
row, left panel). A representative PA setup (right panel).
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the traditional Born seriesmethodworkswell when the speed of sound contrast resides within−11% to 22%.
However, the convergent Born series technique remains valid even beyond these limits.

The goal of this article is two folds. The alteration ofDPACSwith frequency (100–1000MHz)when captured
by a point receiver is investigated in the forward framework. Such curves have been generated for three locations
θ= 0,π/4,π/2 andf= π/4. In the inverse problem, fitting of theDPACSplots (for θ= π/4 andf= π/4),
produced by the same test objects as stated previously, have been donewith form factormodels to evaluate the
morphological parameters. Apart from two (TAEFF andCFF) simplemodels, we utilized toroid form factor
(TFF)model too forfitting. The derivation of thesemodels is carried out in details in this paper. The
performance of thesemodels have been rigorously evaluated for different cells/droplets investigated in this
work. Reliable estimation of the shape parameters for ellipsoidal particles is possible by the TAEFFmodel. The
TFFmodel precisely determines the characteristic size of normal RBC. TheCFFmodel seems to be inferior
among them. Themodelsmay be utilized to analyzemeasured spectral data for the evaluation of cell
morphology.

The structure of the paper is as follows. Section 2 details themodeling approaches (forward and inverse
frameworks). The numerical schemes utilized in this study are elaborated in section 3. The computational
results are illustrated in section 4. Section 5 highlights important points regarding the form factormodels and
how to apply them in future for solving practical problems. The conclusion of this researchwork is also
presented here.

2.Modeling approaches

2.1.Modeling of the forward problem
The time independent wave equation for PApressure (p) in an acoustically nondispersive and nonabsorbing
medium is given by [22],

wmb
 + =p k p

i I

C
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Here,β is the specific heat capacity at constant pressure;μ is optical absorption coefficient; andCP is the isobaric
thermal expansion coefficient of the PA source. Further,ω and I0 denote themodulation frequency and intensity
of the incident laser beam, respectively; the notation k represents thewave number. Note that the acoustic
characteristics (density and speed of sound) inside and outside the PA source are assumed to be the same.
Further, the opto-thermo-mechanical parameters do not exhibit spatial variationwithin the source region. In
deriving equation (1), the conditions of thermal and stress confinements have been imposed. The solution to
equation (1) can be derived as [16, 17],
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r0(r0, θ0,f0) is the source point and r(r, θ,f) is thefield point [23]. A schematic diagramof the PA geometry in
2D is illustrated in the right panel offigure 1. Thefield point lies outside the absorber (i.e., r> r0) and that is
denoted by the subscript ext. Equation (2) in the farfield (r? r0) becomes,
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andM(k)=− iμβI0ωϒ/(4πCP), represents the strength of thewave (moving radially outward from the source)
emitted by the light absorbing object. Accordingly, theDPACS is calculated as [16, 17],
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Here, v and ρ denote the speed of sound and density of the ambientfluidmedium. The termDPACS has been
coined by us. TheDPACS is similar to the differential scattering cross-section, which is used frequently and
measured inmany streams to examine the properties of scatterer. In this study, we have numerically calculated
frequency dependentDPACS, equation (5), for various irregular shapes imitating the biological cells.

In this study, PA signals for a delta function heating pulse have also been computed for some shapes by
employing the following expression [22],
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where F is thefluence of the incident laser beam. Itmay be noted that equation (6) represents an analytic signal.

2.2.Modeling of the inverse problem
The integration in equation (4) for regular objects (i.e., sphere, infinite cylinder etc.) can be carried out
analytically. Hence, simple and elegant closed form formulas forσ(k) can be obtained. For instance, for an
ellipsoidal droplet, one derives [24, 25],
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is called the TAEFF and FF→ 1 for small particle. Figure 2 (left panel) demonstrates the geometrical setup of an
ellipsoidal droplet. Itmight be stated here thatmorphological information of the light absorbing region are
embedded in FF. To quantify the size of the scatterer, the FFmodels are often used inmany fields [24].

In the similar fashion, one for afinite cylinder (see figure 2,middle panel) arrives at [25],
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where L,Γ and J1 symbolize length, radius of the cylinder and the Bessel function offirst kind of order one,
respectively. Thus, the corresponding formula can bewritten as,

Figure 2.Visualization of themodel particles in 3D. Left panel: tri-axial ellipsoid,middle panel:finite cylinder and right panel: toroid.
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For a toroidal source, equation (4)may bewritten as [26, 27],
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the toroid, respectively. In this derivation, it is assumed that the plane of the toroid and the z-axis are
perpendicular to each other (see right panel offigure 2). Accordingly, the TFF can be presented as [26, 27],
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These three FFmodels are utilized herein tofit simulatedDPACS spectra for various objects similar to biological
cells and to accomplish theirmorphological characterization. The TAEFF andCFFmodels are quite simple and
thus appealing. The visualization of sourcemorphology is indeed trivial in terms of the bestfit parameters (ñ1, ñ2
and ñ3 in case of the TAEFFmodel;Γ and L belong to theCFFmodel), obtained by solving the inverse problem
and also interpretation of the extracted parameters becomes easy. The TFFmodel better resembles normal RBC
and that is why it has been utilized in this study.

3. Computationalmethod

3.1. Formulas for generating the shapes of various PA sources
The revolution around themajor andminor axes of an ellipsoid generates the prolate and oblate spheroids,
respectively. The radial and angular coordinates of a point situated on the surface of a spheroid are related to,

q
q q

¢ ¢ =
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r
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with b and a are the lengths of the semi-minor axis andmajor axis, respectively.
The shapes that fall under the category of Chebyshev particle can be generated as [28],

q q¢ ¢ = + ¢r R n1 cos , 14c( ) [ ] ( )

where ò and n refer to the deformation andwaviness parameters, respectively;Rc denotes the radius of the
unperturbed sphere. Various realistic particles can be approximated as theChebyshev particles. These objects
exhibit symmetry about the z-axis and nonspherical in shape.

Here, theCassini ovalmodel was used to construct the shape of normal RBC (see left image of top rowof
figure 1) and it can be presented as [29],

h h z+ + + - + =x y z x y4 . 152 2 2 2 2 2 2 2 4( ) ( ) ( )

The biconcave shape can be producedwith equation (15)when η is slightly less than ζ. Further, the η and ζ values
are related to the fourmorphological parameters, namely, diameter (D), dimple thickness (t), maximum
thickness (h) and the diameter of the circular contour drawnon themaximum thickness (d) as,D2= 4(ζ2+ η2),
t2= 4(ζ2− η2) and h= ζ2/η [29, 30].

3.2. Choice of thermo-opto-mechanical parameters
The numerical values of the thermo-opto-mechanical parameters for the PAobjects were chosen as-
I0= 1.51× 1012 Jm−2s−1,μ= 809.02m−1,β= 1.5× 10−4 K−1,CP= 3.23× 103 Jkg−1K−1. The values of speed
of sound (v= 1498 m/s) and density (ρ= 1005 kg m−3) of the source and ambientmediawere taken from the
literature [17]. The numerical values of these parameters are shown in table 1.

3.3. Choice of the shapes of the PA sources
In this article, we took ellipsoidal droplets with aspect ratio, AR= 1:2, 1:4, 1:8, 2:1, 4:1 and 8:1 andChebyshev
particles with deformation parameters ò=± 0.25 andwaviness parameters, n= 2, 3, 8. Chebyshev shapeswith
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n= 35, 45 and deformation parameters, ò=± 0.05were also employed. These are higher order Chebyshev
particles [31]. The volume for each particle (ellipsoidal andChebyshev)wasfixed at 523.6 μm3. Table 2 (rows
3–5) illustrates these numerical values. The ellipsoidal particles are the simple particles. The corresponding
DPACS spectra are also simple and easy to interpret. The aspect ratio was arbitrarily chosen for these particles.
The ellipsoidal droplets were considered in this study to gain insights. The shape complexity of the Chebyshev
particles growswith the increase of n. This class of particles was utilized previously by others tomodel realistic
sources. The choice of the deformation parameters wasmade based on the previous works [28, 31].

The volume for normal and pathological RBCswas taken as 105 μm3. Figure 1 (left panel) displays the
surface plots of these cells. The fourmorphological parameters for normal RBC as given in table 2 (row 6)were
taken from the literature [30]. These values provided η= 2.66 and ζ= 2.75whichwere used to construct the
discocyte (normal RBC)while evaluating equation (15). The shape resembling stomatocyte (ST)was generated
by altering η and ζ phenomenologically. For this shape, the upper half was simulated using equation (15) for
η= 2.04 and ζ= 2.45, and the lower half was considered as a half-sphere.Hereditary disorders, namely,
spherocyte (SC) and elliptocyte (EC)were considered in this work too and the corresponding numerical values
of the shape parameters are given in table 2 (rows 8–9), respectively. The SCmight be thought of as the
equivalent sphere for normal RBC. TheARof ECwasfixed based on the published results [11].

3.4. Numerical calculation
TheDPACSwas calculated for various nonsphercial axisymmetric shapes by evaluating equation (5). The
frequency rangewas considered as 100–1000MHzwith a step size of 1 MHz. Essentially, theDPACSwas
evaluated for three detector locations [θ= 0,π/2,π/4 but at constantf (f= π/4)] to examine how it would
vary for different probing angles. However, themorphological parameters of the sourcewere obtained byfitting
theDPACS spectrum (computed along θ= π/4 andf= π/4), whichwas arbitrarily chosen. TheMonte Carlo
integrationmethodwas employed to carry out the integration in equation (4)numerically [32]. Approximately,
20million randompoints were thrownwithin a box enclosing each shape at a time to obtain converging result.
For example, the size of the boxwas 11× 11× 11 μm3 for a sphere of radius 5 μm,whichwas placed at the
center of the boxwhile calculating the PAfield. Thefields corresponding to the randompoints that lied inside
the shapewere summedup to calculate the resultantfield. Essentially, an array (to store complex pressure values)
of length 901was created atfirst and assignedwith zeros. Thefield at a frequency for a valid throwwas calculated
[see equation (4)] and addedwith its previous value that was already stored in the array. This stepwas performed
for all frequencies for that throw. In this way, computed fields for all valid throwswere summed up for each
frequency. Therefore, althoughwe considered 20million randompoints,memory requirement was small
because only pressure values at 901 frequency points were stored. A personal computer (OS-Windows 10,

Table 1.Numerical values of
various physical parameters
considered in this study.

ρ 1005 kg m−3

v 1498m/s

μ 809.02m−1

β 1.5 × 10−4 K−1

CP 3.23 × 103 Jkg−1K−1

I0 1.51 × 1012 Jm−2s−1

Table 2.Quantitative values of the shape parameters used in simulations.
(The unit for length parameters is μm.)

Objects Volume Shape parameters

(μm3)

Spheroids 523.6 b:a = 1:8, 1:4, 1:2, 2:1, 4:1, 8:1

Chebyshev 523.6 ò = ± 0.25, n = 2, 4 and 6

particles 523.6 ò = ± 0.05, n = 35 and 45

RBC 105 D = 7.65, t/2 = 0.70, h/

2 = 1.42, d = 0.7D

ST 105 D = 6.37, t/2 = 1.36, h/

2 = 1.47, d = 0.7D

SC 105 b:a = 1:1

EC 105 b:a = 7:11
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RAM- 12 GB, i5 processor, 3.30 GHz clock speed)was used to calculate the frequency dependentDPACS. The
execution time for the same over awide frequency range (100–1000MHz)was estimated to be≈10minutes.

After that theDPACS spectrum (for θ= π/4,f= π/4) for each particle was analyzed formorphological
characterization. Atfirst the frequency location at which theDPACS becamemaximumwas identified (let fm)
and then normalizedDPACS spectrumwas obtained as

s
s

f

fm

( )
( )

. The following stepwas to change the fitting

parameters iteratively associatedwith the TAEFF (ñ1, ñ2, ñ3), CFF (Γ and L), TFF (Rt andRc)models and at each

step a normalized quantity defined as
f FF f

f FF fm m

2

2

( )
( )

was calculated over the same frequency bandwidth tofit the

normalizedDPACS spectrum.
Aχ2 test was performed to assess goodness of afitting. Theχ2 is defined as [33],
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Standard deviation at each point was considered to be 10% (arbitrarily fixed) of that of the normalized spectrum.
We stored all the combinations offit parameters for eachmodel for whichχ2 valueswere<= 2× [minimumof
χ2]. After thatmean and standard deviationwere obtained for each shape parameter.

4. Computational results

Frequency dependentDPACS (for θ= 0,π/4,π/2 andf= π/4) for ellipsoidal shapes withAR= 1:4 and 4:1 are
plotted infigures 3(a) and (b), respectively for a frequency range of 100-1000MHz. The same graphs for the
Chebyshev droplets (with parameters n= 4, ò= 0.25 and n= 4, ò=− 0.25) are shown infigures 3(c) and (d),
respectively. These plots contain several prominentmaxima andminima [16, 19]. The spectrumof each particle
is unique in each direction. Thefirst dip for the ellipsoidal particle having AR= 1:4 appears at 541, 185, and
135MHz, when computed along θ= 0,π/4 andπ/2, respectively. Similar trend is also observed in the
figures 3(b–d). The thickness of the particle along the direction ofmeasurement decides the locations ofminima.
The thicker is the particle, earlier is the location of thefirstminimum. Illustrative curves of the frequency
dependentDPACS are given in figure 4 for RBCs. Thefirstminimum for eachRBC appears at a unique location
for each direction ofmeasurement. Thefirstminimum for normal RBCmanifests at 633, 347, and 247MHz for
the three detectors (θ= 0,π/4 andπ/2), respectively. The dips are not prominent in the case of ST for θ= 0 [see

Figure 3. (a)Plots ofDPACS spectral data for an ellipsoidal particle with aspect ratio, AR= 1:4 for three detector locations θ = 0,π/4,
π/2 andf = π/4. (b) Same as (a) but for another ellipsoidal particle with AR= 4:1. The spectral lines for theChebyshev particles
(n = 4, ò = ± 0.25) are drawn in (c) and (d), respectively.
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figure 4(b)]. Themagnitudes of depths of the dips grow aswemove from θ= 0 toπ/2. The SC shape is essentially
spherical, that is why the spectrum is identical from all detector locations. Figure 4(d) exhibits similar trend as
that offigure 3(a) [because both are the oblate spheres].

Plots of normalizedDPACSs are shown for ellipsoidal andChebshev particles infigure 5. The best fitted
curves provided by the TAEFFmodel are also drawn in thesefigures. The numerical values of the best fit
parameters and the corresponding values ofχ2 are given in table 3. Figures 5(a) and (b)demonstarte that the
TAEFFmodel can accurately fit the simulatedDPACS spectra over awide frequency range (100–1000MHz).
That is whymorphological parameters of the ellipsoidal particles are accurately retrieved (see rows 4, 6, 8, 10, 12
and 14, column 2, table 3). For each ellipsoidal particle, the percentage volume error is also inserted in the table.
It is less than 4% for all particles.

The TAEFFmodel unable to accurately fit the spectrum for theChebyshev particle with n= 4, ò= 0.25
particularly above≈ 380MHz [see figure 5(c)]. However, the fitting ismuch better infigure 5(d) over the entire
frequency range. Theχ2 value corresponding tofigure 5(c) ismuch higher than that offigure 5(d) though the
volume error exhibits the opposite trend [as given in rows 17 and 27, column 2, table 3, respectively]. The

Figure 4.The graphs for theDPACS spectra for normal and deformedRBCs for detectors placed at θ = 0,π/4,π/2 andf = π/4 [(a)
for normal RBC, (b) for Stomatocyte (ST), (c) for Spherocyte (SC) and (d) for Elliptocyte (EC)].

Figure 5. Fitting of the normalizedDPACS spectra employing the TAEFFmodel for ellipsoidal particles with aspect ratio, AR= 1:4 in
(a) andAR= 4:1 in (b). Similar graphs for the Chebyshev droplets (n = 4, ò = ± 0.25) are shown in (c) and (d), respectively.
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Table 3.The extracted values (mean ± standard deviation) of the shape parameters for ellipsoid andChebyshev particles. The actual values
of the same parameters are also included here to assess the performance of the technique. The goodness offitting (χ2) and volume error (VE)
are presented in the table as well. [The unit for a, b,Rc, ñ1, ñ2 and ñ3 is μm.]

Nominal values (μm) Estimated values (μm)
θ = π/4, f = π/4

χ2 = 1.47e + 3, VE = 3.1%

a = 6.28,

a = 6.28, b = 3.14

ñ1 = 6.25 ± 0.53, ñ2 = 6.25 ± 0.53,

ñ3 = 3.10 ± 0.53

χ2 = 8.70e + 3, VE= 2.1%

a = 7.93,

a = 7.93, b = 1.98

ñ1 = 7.90 ± 0.53, ñ2 = 7.90 ± 0.53,

ñ3 = 1.96 ± 0.56

χ2 = 4.20e + 4, VE= 3.0%

a = 10.0,

a = 10.0, b = 1.25

ñ1 = 9.97 ± 0.55, ñ2 = 9.97 ± 0.55,

ñ3 = 1.22 ± 0.57

χ2 = 3.54e + 3, VE= 0.0%

a = 3.96,

a = 3.96, b = 7.93

ñ1 = 3.97 ± 0.58, ñ2 = 3.97 ± 0.21,

ñ3 = 7.90 ± 0.58

χ2 = 3.16e + 5, VE= 1.0%

a = 3.14, a = 3.14,

b = 12.56

ñ1 = 3.14 ± 0.58, ñ2 = 3.14 ± 0.58,

ñ3 = 12.57 ± 0.10

χ2 = 3.76e + 8, VE= 0.0%

a = 2.50,

a = 2.50, b = 20.0

ñ1 = 2.50 ± 0.58, ñ2 = 2.50 ± 0.58,

ñ3 = 19.96 ± 0.05

χ2 = 5.54e + 6, VE= 8.1%

Rc = 5.31,

n = 2, ò= 0.25

ñ1 = 4.00 ± 0.58, ñ2 = 4.00 ± 0.58,

ñ3 = 7.18 ± 0.23

χ2 = 13.72e + 8, VE= 15.3%

Rc = 4.93,

n = 4, ò= 0.25

ñ1 = 5.26 ± 0.08, ñ2 = 5.26 ± 0.08

ñ3 = 5.21 ± 0.04

χ2 = 2.40e + 9, VE= 13.8%

Rc = 4.89,

n = 6, ò= 0.25

ñ1 = 3.95 ± 0.51, ñ2 = 3.95 ± 0.51

ñ3 = 6.90 ± 0.15

χ2 = 2.47e + 4, VE= 2.3%

Rc = 5.00,

n = 35, ò= 0.05

ñ1 = 5.21 ± 0.78, ñ2 = 5.21 ± 0.78

ñ3 = 4.71 ± 0.46

χ2 = 4.29e + 5, VE= 1.7%

Rc = 5.00,

n = 45, ò= 0.05

ñ1 = 5.20 ± 0.78, ñ2 = 5.20 ± 0.78

ñ3 = 4.70 ± 0.45

χ2 = 2.18e + 8, VE= 1.0%

Rc = 4.53,

n = 2, ò=−0.25

ñ1 = 5.85 ± 0.53, ñ2 = 5.85 ± 0.53

ñ3 = 3.63 ± 0.50

χ2 = 4.92e + 6, VE= 45.0%

Rc = 4.78,

n = 4, ò=−0.25

ñ1 = 4.03 ± 0.58, ñ2 = 4.03 ± 0.58

ñ3 = 4.24 ± 0.40

χ2 = 4.92e + 6, VE= 29.4%

Rc = 4.82,

n = 6, ò=−0.25

ñ1 = 6.36 ± 0.51, ñ2 = 6.36 ± 0.51,

ñ3 = 4.00 ± 0.45

χ2 = 10.81e + 5, VE= 2.9%

Rc = 5.00,

n = 35, ò=−0.05

ñ1 = 5.22 ± 0.79, ñ2 = 5.22 ± 0.78,

ñ3 = 4.72 ± 0.46

χ2 = 14.56e + 4, VE= 1.7%

Rc = 5.00,

n = 45, ò=−0.05

ñ1 = 5.20 ± 0.78, ñ2 = 5.20 ± 0.78,

ñ3 = 4.70 ± 0.45
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volume errors for the intermediate Chebyshev particles are slightly higher because of their complex structures
(see rows 17, 19, 27 and 29) than lower and very higher order particles (error is<10%) as can be seen from
table 3.

Plots of normalizedDPACS corresponding tofigure 4 (for θ= π/4 andf= π/4) are presented infigure 6.
Thefitted curves generated by the TAEFF, CFF andTFFmodels are displayed in each figure aswell (usingmean
values of ñ1, ñ2 and ñ3 for the TAEFF;Γ, L for theCFF;Rt andRc for the TFF). The estimated and actual values of
the shape parameters are presented in table 4. Figures 6(a)–(d) clearly illustrate that the TAEFF andTFFmodels
in general facilitate excellentfits to the curves from100–1000MHz. TheCFFmodel fits the curves accurately till
the frequency 540, 260, 220 and 400MHz in case of normal RBC, ST, SC and EC, respectively. Therefore, the
performance of theCFFmodel is inferior than others.

Table 4 demonstrates (rows 4–6 and column 2) that the anticipated values of ñ1 and ñ2 are very close to the
radius of normal RBC (deviation is≈3%). The estimated value of ñ3 lies between t= 1.4 μm (minimumheight
of RBC) and h= 2.84 μm (maximumheight of RBC). The extracted value ofΓ (rows 4, column 3) is close to the
physical value (error≈2%) and L is comparable to the highest thickness h= 2.84 μmof the cell (error≈ 4%).
The distance of the outer periphery from the center (i.e.,Rt+ Rc) is appropriately anticipated by the TFFmodel
(error≈2%). However, the thickness of the estimated toroid is slightly higher than themaximum thickness of
normal RBC. The TAEFF andTFFmodels offer better curvefitting than theCFFmodel for normal RBC (seeχ2

values at row 3, columns 2, 3 and 4 of table 4). As expected the TAEFFmodel worksmuch better for the last two
cases (error�6%) in comparison to the second case (stomatocytosis, error<15%). TheCFFmodel performs
better forfirst two cells than the others. For all the deformed cells, volume errors associatedwith the TFFmodel
are comparable.

Numerous PA spectral lines produced by a number of droplets are illustrated in this work (seefigures 3 and
4). However, in practice, these spectra are obtained by taking the Fourier transformof the corresponding PA
signals. Some representative PA signals are displayed infigure 7. A narrow and sharpN-shaped pulse is
computedwhen the ultrasonic transducer is positioned at θ= 0 as given infigure 7(a). The pulse is elongated by
a factor of 1.66 and 2, when probed from θ= π/4 andπ/2, respectively. Its amplitude is approximately reduced
by a factor of 3.15 and 4.14when probed from the same directions, respectively. This can be attributed to the fact
that RBC is thinner when viewed by the ultrasound detector from the first direction compared to the second and
third directions. The amplitude of the PA signal is reduced by a factor of≈2.5whenmeasured from the direction
of θ= π/4 andπ/2 in case of ST compared to that of θ= 0. As anticipated, signals are identical for SC from all
directions as shown infigure 7(c). A positive pressure followed by a negative pressure sequence trend is also

Figure 6. (a)Normalized andfitted lines for healthy RBC. (b)–(d) Same as (a) but for Stomatocyte (ST), Spherocyte (SC) and
Elliptocyte (EC), respectively.
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Figure 7.Plots of the PA signals generated by normal and diseased RBCs. The signals along θ = 0,π/4, andπ/2 are demonstrated in
(a) for RBC, (b) for ST, (c) for SC and (d) for EC.

Table 4.The evaluated values (mean ± standard deviation) of themorphological parameters for healthy and pathological cells examined in
this work. The nominal values of those parameters are appended here too for comparison. The goodness offitting (χ2) and volume error
(VE) are also given in the table. [The unit forRe, h, t, ñ1, ñ2, ñ3,Γ, L,Rt andRc is μm.]

Nominal
Estimated values (μm)

values TAEFF CFF TFF

χ2 = 9.00e + 5 χ2 = 9.00e + 6 χ2 = 5.81e + 5

Re = 3.82 ñ1 = 3.94 ± 0.73 Γ = 3.75 ± 0.02 Rt = 2.12 ± 0.01

t/2 = 0.7 ñ2 = 3.94 ± 0.73 L = 2.72 ± 0.10 Rc = 1.62 ± 0.03

h/2 = 1.42 ñ3 = 1.67 ± 0.56

VE=3.4% VE=13.8% VE=4.5%

χ2 = 2.52e + 4 χ2 = 7.12e + 04 χ2 = 3.94e + 4

Re = 3.18 ñ1 = 3.70 ± 0.80 Γ = 3.63 ± 0.11 Rt = 2.04 ± 0.03

t/2 = 1.36 ñ2 = 3.70 ± 0.80 L = 2.58 ± 0.30 Rc = 1.47 ± 0.02

h/2 = 1.47 ñ3 = 1.56 ± 0.56

VE=14.8% VE=1.72% VE=17.1%

χ2 = 7.14e + 2 χ2 = 7.00e + 7 χ2 = 7.58e + 7

a = 2.92 ñ1 = 2.99 ± 0.56 Γ = 3.59 ± 0.02 Rt = 2.03 ± 0.01

a = 2.92 ñ2 = 2.99 ± 0.56 L = 4.79 ± 0.13 Rc = 1.47 ± 0.02

b = 2.92 ñ3 = 2.77 ± 0.38

VE=1.9% VE=84.7% VE=17.5%

χ2 = 6.56e + 2 χ2 = 11.74e + 7 χ2 = 2.08e + 6

a = 3.40 ñ1 = 3.36 ± 0.55 Γ = 3.46 ± 0.04 Rt = 1.97 ± 0.01

a = 3.40 ñ2 = 3.36 ± 0.55 L = 3.43 ± 0.47 Rc = 1.43 ± 0.01

b = 2.16 ñ3 = 2.09 ± 0.50

VE=5.9% VE=22.8% VE=24.2%
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observed for EC as shown infigure 7(d). TheN-shaped signals for θ= π/4 andπ/2 are slightly broader than that
of θ= 0.

5.Discussion and conclusions

TheGreen’s function approach has been used to solve theHelmholtz equation. This equation accuratelymodels
the production and propagation of the PAwaves. The PAfields have been calculated for ellipsoidal droplets,
Chebyshev particles, normal and diseased RBCs. TheDPACS spectra have also been computed for the above
mentioned droplets. Thicker is the particle (along the direction of estimation), greater is the number of
fluctuations in theDPACS curve. The location of the firstminimumappears earlier as the thickness of the PA
absorber grows in the same direction. Also the amplitude of theDPACS increases with the expansion of the area
normal to the direction of observation. Further, the TAEFF, CFF andTFFmodels are employed tofit theDPACS
curves.

The TAEFFmodel extracts volume information accurately even for complex structures. This is because,
three parameters, providingmore degrees of freedom, can be tuned efficiently to obtain betterfitting in
comparison to theCFF andTFFmodels which have two degrees of freedom. TheCFFmodel works satisfactorily
for particles with approximately cylindrical shape. It can be readily understand that the horn torus (Rt= Rc)
bettermimmics the shape of normal RBC.However, in this work, we have found that the ring torus (Rt> Rc)
provides betterfitting to theDPACS spectrum for normal RBC. Thismay be attributed to the fact that the central
region of normal RBC contributes less to theDPACS (because it is very thin around the centre but thick close to
the periphery) and it is ensured in case of ring torus. Itmay be emphasized that we did not consider normalized
χ2 herein. Further, DPACS at some frequencies (at the locations of dips) became very small and that is whyχ2

became very large in some cases. Therefore, a large value ofχ2 did not alwaysmean that thefittingwas poor.
In this work, it was assumed that the detector was an ideal point detector having uniform sensitivity between

100 to 1000MHz. Themeasurements are carried out using bandlimited detectors during experiment and thus
more than one detector would be required to record signals between 100 to 1000MHz. Further, simulated PA
spectra are devoid from electrical and thermal noises, which in general appear in practice. Note that
measurements are performed using detectors withfinite aperture. Keeping this in ourmind, we exhaustively
calculatedDPACS spectra (for θ= π/4,f= π/4) for different RBCs forfinite size detectors (see figure 8). The

Figure 8. (a)Plots ofDPACS spectra (for θ = π/4,f = π/4) for healthy RBC forfinite detector (FD) and point detector (PD). The
distance (rd) of the detector from the center of the source ismentioned in each case. The radius of aperture for FD is fixed to 40 μm.
Similar graphs for Stomatocyte (ST), Spherocyte (SC) and Elliptocyte (EC) are presented in (b)–(d), respectively.
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DPACSwas computed at three different radial distances (30, 80, and 1000 μm). The radius of the aperture of the
detector wasfixed at 40 μm.TheDPACS spectrum for a point detector is also included in eachfigure for
comparison. It can be observed from figures 8(a) and (b) that the deep nulls that appear in theDPACS plots for a
finite size detector have been reduced and become little wide for normal RBC and ST, respectively. However,
there is nomuch variation can be seen in case of SC and EC as evidenced from figures 8(c) and (d). Nevertheless,
the effect of directivity of the sensor (because offinite aperture size) onDPACS spectrumwas not includedwhile
calculating it. Further investigation is required to study this aspect.

Itmay be noted that attenuation is amajor issue at high frequencies.We have considered attenuation of
acoustic waves in another work in details [19].We found thatDPACS spectrumdecays exponentially due to
attenuation.However, we used attenuation compensatedDPACS spectrumwhile solving the inverse problem
and thus reliable estimates of the shape parameters were obtained.Moreover, in this work, we took only one
orientation of the PA sourcewith respect to the co-ordinate system and accordingly, computationwas
performed.Hence, intravariablity of shape of a particular class of particles (e.g., normal RBC)was not
incorporated in this study. In reality, orientation of a source under investigationmight be arbitrary and
therefore, DPACS spectrum averaged overmany orientations is obtained for further analysis [7]. This issue has
been recently dealt by us and presented in details in [19].

In this study, we considered axisymmetric shapes only. It will be very interesting to study the variation of the
DPACSwith frequency for nonspherical and nonaxisymmetric particles. Specially, echinocyte cell which is
clinically very important and falls in the category of nonspherical and nonaxisymmetric particles. These shapes
can be generated by spherical harmonics expansion [34, 35]. It will also be interesting to apply the inverse
problem framework presented here for acoustically inhomogeneous source and subsequently, examine the
performance of the form factormodels in estimatingmorphological parameters.

In conclusion, the frequency dependentDPACS in the far field has been computed (for three angular
locations θ= 0,π/4,π/2 andf= π/4) for some nonspherical axisymmetric fluid particles resembling
biological cells for an ideal point detector having constant sensitivity over the frequency range from100 to
1000MHz. TheDPACS spectra for θ= π/4 andf= π/4 have been fittedwith the TAEFF, CFF andTFFmodels
to obtain the size and shape information of the PA objects. In general, the TAEFFmodel workswell for all
shapes. This techniquemay be employed in practice formorphological characterization of normal and
pathological RBCs.
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